Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 37(12): 2897-2909, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36063024

RESUMO

Long term exposure to solar ultraviolet B (UVB) radiation is one of the primary factors of premature skin aging and is referred to as photoaging. Also, mammalian skin exposed to UVB triggers an increase in production of α-melanocyte-stimulating hormone (α-MSH), which is critically involved in the pathogenesis of hyperpigmentary skin diseases. This study investigated the protective effect of limonene on UVB-induced photodamage and photoaging in immortalized human skin keratinocytes (HaCaT) in vitro. Initially, we determined cell viability and levels of reactive oxygen species (ROS) in UVB-irradiated HaCaT cells. Pretreatment with limonene increased cell viability followed by inhibition of intracellular ROS generation in UVB-irradiated HaCaT cells. Interestingly, the antioxidative activity of limonene was directly correlated with an increase in expression of endogenous antioxidants, including heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1), and γ-glutamylcysteine synthetase (γ-GCLC), which was associated with enhanced nuclear translocation and activation of NF-E2-related factor-2 (Nrf2). Indeed, Nrf2 knockdown reduced limonene's protective effects. Additionally, we observed that limonene treatment inhibited UVB-induced α-MSH secretion followed by inhibition of proopiomelanocortin (POMC) via suppression of p53 transcriptional activation. Moreover, limonene prevented UVB-mediated depletion of tight junction regulatory proteins, including occludin and zonula occludens-1. On the other hand, limonene treatment significantly decreased matrix metalloproteinase-2 levels in UVB-irradiated HaCaT cells. Based on these results, limonene may have a dermato-protective effect in skin cells by activating the Nrf2-dependent cellular antioxidant defense system.


Assuntos
Limoneno , Envelhecimento da Pele , Dermatopatias , Humanos , alfa-MSH/metabolismo , Antioxidantes/metabolismo , Queratinócitos , Limoneno/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Células HaCaT
2.
Plants (Basel) ; 9(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260669

RESUMO

The anti-melanogenic activity of essential oils of Alpinia nantoensis and their bioactive ingredients were investigated in vitro. Treatment with leaf (LEO) and rhizome (REO) essential oils of A. nantoensis, significantly reduced forskolin-induced melanin production followed by down-regulation of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1) expression at both transcriptional and translational levels. Further studies revealed that down-regulation TYR and TRP-1 were caused by LEO/REO-mediated suppression of Microphthalmia-associated transcription factor (MITF), as evidenced by reduced nuclear translocation of MITF. Also, we found that LEO/REO induce the sustained activation of ERK1/2, which facilitate subsequent proteasomal degradation of MITF, as confirmed by that LEO/REO failed to inhibits MITF activity in ERK1/2 inhibitor treated cells. In addition, a significant increase of ubiquitinated MITF was observed after treatment with LEO and REO. Furthermore, the chemical composition of LEO and REO were characterized by gas chromatography-mass spectrometry (GC-MS) resulted that camphor, camphene, α-pinene, ß-pinene, isoborneol and D-limonene were the major compounds in both LEO and REO. Further studies revealed that α-pinene and D-limonene were the active components responsible for the anti-melanogenic properties of LEO and REO. Based on the results, this study provided a strong evidence that LEO and REO could be promising natural sources for the development of novel skin-whitening agents for the cosmetic purposes.

3.
Planta Med ; 85(9-10): 755-765, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31185503

RESUMO

Antcin-A (ATA) is a steroid-like phytochemical isolated from the fruiting bodies of a precious edible mushroom Antrodia cinnamomea. We previously showed that ATA has strong anti-inflammatory and anti-tumor effects; however, other possible bioactivities of this unique compound remain unexplored. In the present study, we aimed to investigate the modulation of epithelial-to-mesenchymal transition (EMT), anti-migration, and anti-invasive potential of ATA against human breast cancer cells in vitro. Human breast cancer cell lines, MCF-7 and MDA-MB-231, were incubated with ATA for 24 h. Wound healing, trans-well invasion, western blot, q-PCR, F-actin staining, and immunofluorescence assays were performed. We found that treatment with ATA significantly blocked EMT processes, as evidenced by upregulation of epithelial markers (E-cadherin and occludin) and downregulation of mesenchymal markers (N-cadherin and vimentin) via suppression of their transcriptional repressor ZEB1. Next, we found that ATA could induce miR-200c, which is a known player of ZEB1 repression. Further investigations revealed that ATA-mediated induction of miR-200c is associated with transcriptional activation of p53, as confirmed by the fact that ATA failed to induce miR-200c or suppress ZEB1 activity in p53 inhibited cells. Further in vitro wound healing and trans-well invasion assays support that ATA could inhibit migratory and invasive potentials of breast cancer cells, and the effect was likely associated with induced phenotypic modulation. Taken together, the present study suggests that antcin-A could be a lead phyto-agent for the development of anti-metastatic drug for breast cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Esteroides/farmacologia , Proteína Supressora de Tumor p53/genética , Antígenos CD/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/genética , Fator de Crescimento Transformador beta1/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
PLoS One ; 10(2): e0117111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658913

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a crucial event involved metastasis of certain tumors. Thus, identifying chemical agents that can block EMT is highly warranted for the development of anti-cancer chemoprevention/chemotherapies. In this study, we found that Antrodin C (ADC), a maleimide derivative isolated from Antrodia cinnamomea health food product inhibits TGF-ß1-induced EMT and breast cancer cell metastasis in vitro. Pretreatment of MCF-7 cells with ADC significantly blocked TGF-ß1-induced phenotypic changes and actin cytoskeleton remodeling. In addition, ADC was able to up-regulate epithelial markers such as E-cadherin and occludin, whereas mesenchymal markers including N-cadherin and vimentin were significantly inhibited, possibly through the modulation of transcriptional regulators Smad/Smad3. ADC blocked TGF-ß1-induced migration and invasion of MCF-7 cells through the down-regulation of matrix-metalloproteinases (MMP-2, -9) and urokinase plasminogen activator (uPA). The inhibition of MMPs and uPA activity by ADC was reasoned by suppression of its corresponding transcription factor ß-catenin. Taken together, our data suggested that ADC attenuates the TGF-ß1-induced EMT, migration and invasion of human breast carcinoma through the suppression of Smad2/3 and ß-catenin signaling pathways.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Maleimidas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antrodia/química , Antrodia/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Maleimidas/química , Maleimidas/isolamento & purificação , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos
5.
Biofactors ; 39(3): 259-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23322673

RESUMO

Gallic acid (GA) is a phenolic compound, which has been reported to suppress melanogenesis in melanoma cells. However, the molecular mechanism underlying this inhibitory effect was poorly understood. In this article, we revealed that GA down-regulated melanogenic regulatory genes including tyrosinase, tyrosinase related protein-1 (TRP-1), and dopachrome tatamerase (Dct) expression at transcriptional and translational level. In addition, GA effectively suppressed the microphthalmia-associated transcription factor (MITF) expression by down-regulating the cAMP-mediated PKA/CREB signaling cascades. To delineate the inhibition of MITF by GA, the activation of extracellular signal-regulated protein kinase (ERK) and AKT was investigated. GA caused significant increase of ERK and AKT phosphorylation, while ERK (PD98059) or AKT (LY294002) inhibitor prevents their phosphorylation and increased melanin biosynthesis. In addition, pre-treatment of MITF-siRNA significantly reduced melanin production from 100 to 40%, and even decreased into 10% by combination treatment with GA. Furthermore, UVB-induced hyperpigmentation in the mice skin was significantly rescued by topical application of GA for 4 weeks. Immunohistochemical analyses also confirmed that GA significantly inhibited melanin production followed by the down-regulation of MITF, tyrosinase and their regulatory proteins. In addition, when compared with control zebrafish, GA caused a remarkable inhibition on the endogenous pigmentation in the zebrafish. Results presented in this study strongly suggest that GA is an effective de-pigmenting or skin lightening cosmetics for topical application.


Assuntos
Ácido Gálico/farmacologia , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunofluorescência , Imuno-Histoquímica , Melaninas/metabolismo , Melanoma/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...