Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4156-4167, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38922325

RESUMO

Polymeric drugs containing up to 60% by weight of the antibiotic vancomycin were synthesized based on dextran carriers activated with epichlorohydrin. Vancomycin was covalently bound, involving the primary amino group of the molecule through the hydroxypropyl radical to the C6 position of the anhydroglucose units of the dextran main chain. Covalent binding is necessary to prevent spontaneous release of the antibiotic from the gel, thereby reducing the risk of bacterial multiresistance. Antibacterial depot gels were obtained from those polymers, containing up to 17.5% by weight of polysaccharide with a cross-linking density of q = 3-5 nodes per macromolecule for the deposition of another type of drugs not covalently bound to the polymer gel. They were used to coat the surface of the internal pores of biocomposite bone implants based on bovine cancellous bone used in orthopedics. The chemical structure of the polymer was studied using 13C NMR spectroscopy and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The stiffness of the gels was evaluated by the values of the accumulation modulus G' = 170-270 kPa and the loss modulus G″ = 3.7-4.2 kPa determined on a rheometer. Their values are close to those typical for materials used to replace soft tissue in plastic surgery. The minimum inhibitory concentration of the gels against Staphylococcus aureus P209 depends on the antibiotic content in the polymer. It equals 2.5 mg/L for vancomycin we used and 100 mg/L for a polymer containing 50% by weight of covalently bound antibiotic. The cytotoxic concentration measured with cell culture HEK 293T exceeds 1200 mg/L in 24 h exposure. The release dynamics of drugs not covalently bound to dextran from the depot gel were studied using fluorescein as a model. The release time is independent of the gel density and lasts up to 6 days for a 2 mm thick layer. Both the gel and the bone implants impregnated with it maintained consistently high antibacterial activity throughout the experiment, up to its completion after 168 h, with the local concentration of the released antibiotic at the site of bacterial attack exceeding the therapeutic level by 200 times.


Assuntos
Antibacterianos , Géis , Vancomicina , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Géis/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Bovinos , Dextranos/química , Dextranos/farmacologia , Células HEK293 , Testes de Sensibilidade Microbiana , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...