Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 26(1): 179-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057646

RESUMO

PURPOSE: Hypoxia-inducible factor (HIF) drives transcription of critical hypoxia response genes, increasing the production of red blood cells in low oxygen conditions. In the absence of hypoxia, HIF is degraded by prolyl hydroxylases (HIF-PHs). Pharmacological HIF-PH inhibition stabilizes HIF and is being studied as a treatment for anemia. However, like sustained hypoxia, HIF-PH inhibition may increase pulmonary arterial pressure leading to right ventricular hypertrophy. The aim of this study was to assess the cardiac effects of sustained pharmacological HIF-PH inhibition using multimodal imaging, blood analysis, and histology. METHODS: Rats were dosed daily with a pan HIF-PH inhibitor or vehicle for 4 weeks followed by a 2-week washout period and underwent longitudinal magnetic resonance imaging (MRI) and echocardiography to simultaneously assess RV and LV function. Blood samples from weeks four and six were analyzed to determine red blood cell composition. Histology was performed on the cardiac tissue from a subset of rats at weeks four and six to assess structural effects. RESULTS: Imaging revealed that RV ejection fraction was reduced in animals receiving HIF-PH inhibitor and resulted in RV hypertrophy. Interestingly, HIF-PH inhibition had the opposite effect on the left ventricle (LV), increasing contractility measured by LV ejection fraction. LV effects were reversed by week six, while RV effects (functional and structural) were sustained. CONCLUSION: These opposing cardiac effects of HIF-PH inhibition warrant further study to both understand the potential negative effects on RV structure and function and investigate the therapeutic potential of increased LV contractility for conditions like heart failure.


Assuntos
Hipertensão Pulmonar , Função Ventricular Esquerda , Ratos , Animais , Prolil Hidroxilases/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipóxia , Imagem Multimodal
3.
Sci Rep ; 7(1): 13853, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062039

RESUMO

Mutations in IDH1 are highly prevalent in human glioma. First line treatment is radiotherapy, which many patients often forego to avoid treatment-associated morbidities. The high prevalence of IDH1 mutations in glioma highlights the need for brain-penetrant IDH1 mutant-selective inhibitors as an alternative therapeutic option. Here, we have explored the utility of such an inhibitor in IDH1 mutant patient-derived models to assess the potential therapeutic benefits associated with intracranial 2-HG inhibition. Treatment of mutant IDH1 cell line models led to a decrease in intracellular 2-HG levels both in vitro and in vivo. Interestingly, inhibition of 2-HG production had no effect on in vitro IDH1 mutant glioma cell proliferation. In contrast, IDH1 mutant-selective inhibitors provided considerable survival benefit in vivo. However, even with near complete inhibition of intratumoral 2-HG production, not all mutant glioma models responded to treatment. The results suggest that disruption of 2-HG production with brain-penetrant inhibitors in IDH1 mutant gliomas may have substantial patient benefit.


Assuntos
Neoplasias Encefálicas/mortalidade , Inibidores Enzimáticos/farmacologia , Glioma/mortalidade , Glutaratos/metabolismo , Isocitrato Desidrogenase/antagonistas & inibidores , Proteínas Mutantes/antagonistas & inibidores , Mutação , Adulto , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Feminino , Perfilação da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Bone ; 73: 32-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25482211

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease resulting in joint inflammation, pain, and eventual bone loss. Bone loss and remodeling caused by symmetric polyarthritis, the hallmark of RA, is readily detectable by bone mineral density (BMD) measurement using micro-CT. Abnormalities in these measurements over time reflect the underlying pathophysiology of the bone. To evaluate the efficacy of anti-rheumatic agents in animal models of arthritis, we developed a high throughput knee and ankle joint imaging assay to measure BMD as a translational biomarker. A bone sample holder was custom designed for micro-CT scanning, which significantly increased assay throughput. Batch processing 3-dimensional image reconstruction, followed by automated image cropping, significantly reduced image processing time. In addition, we developed a novel, automated image analysis method to measure BMD and bone volume of knee and ankle joints. These improvements significantly increased the throughput of ex vivo bone sample analysis, reducing data turnaround from 5 days to 24 hours for a study with 200 rat hind limbs. Taken together, our data demonstrate that BMD, as quantified by micro-CT, is a robust efficacy biomarker with a high degree of sensitivity. Our innovative approach toward evaluation of BMD using optimized image acquisition and novel image processing techniques in preclinical models of RA enables high throughput assessment of anti-rheumatic agents offering a powerful tool for drug discovery.


Assuntos
Artrite Reumatoide/patologia , Densidade Óssea , Colágeno/administração & dosagem , Microtomografia por Raio-X/métodos , Animais , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/prevenção & controle , Modelos Animais de Doenças , Feminino , Ratos , Ratos Endogâmicos Lew
5.
Mol Pharm ; 10(8): 3103-11, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23819524

RESUMO

Activated macrophages play a significant role in initiation and progression of inflammatory diseases and may serve as the basis for the development of targeted diagnostic methods for imaging sites of inflammation. Folate receptor beta (FR-ß) is differentially expressed on activated macrophages associated with inflammatory disease states yet is absent in either quiescent or resting macrophages. Because folate binds with high affinity to FR-ß, development of folate directed imaging agents has proceeded rapidly in the past decade. However, reports of PET based imaging agents for use in inflammatory conditions remain limited. To investigate whether FR-ß expressing macrophages could be exploited for PET based inflammatory imaging, two separate folate-targeted PET imaging agents were developed, 4-[(18)F]-fluorophenylfolate and [(68)Ga]-DOTA-folate, and their ability to target activated macrophages were examined in a rodent inflammatory paw model. We further compared inflamed tissue uptake with 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]-FDG). microPET analysis demonstrated that both folate-targeted PET tracers had higher uptake in the inflamed paw compared to the control paw. When these radiotracers were compared to [(18)F]-FDG, both folate PET tracers had a higher signal-to-noise ratio (SNR) than [(18)F]-FDG, suggesting that folate tracers may be superior to [(18)F]-FDG in detecting diseases with an inflammatory component. Moreover, both folate-PET imaging agents also bind to FR-α which is overexpressed on multiple human cancers. Therefore, these folate derived PET tracers may also find use for localizing and staging FR(+) cancers, monitoring response to therapy, and for selecting patients for tandem folate-targeted therapies.


Assuntos
Fluordesoxiglucose F18 , Ácido Fólico , Inflamação/diagnóstico , Tomografia por Emissão de Pósitrons , Animais
6.
Mol Imaging Biol ; 15(4): 431-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23440602

RESUMO

PURPOSE: Visualization of the cell cycle in living subjects has long been a big challenge. The present study aimed to noninvasively visualize mitotic arrest of the cell cycle with an optical reporter in living subjects. PROCEDURES: An N-terminal cyclin B1-luciferase fusion construct (cyclin B-Luc) controlled by the cyclin B promoter, as a mitosis reporter, was generated. HeLa or HCT116 cells stably expressing cyclin B-Luc reporter were used to evaluate its cell cycle-dependent regulation and ubiquitination-mediated degradation. We also evaluated its feasibility to monitor the mitotic arrest caused by Taxotere both in vitro and in vivo. RESULTS: We showed that the cyclin B-Luc fusion protein was regulated in a cell cycle-dependent manner and accumulated in the mitotic phase (M phase) in cellular assays. The regulation of cyclin B-Luc reporter was mediated by proteasome ubiquitination. In the present study, in vitro imaging showed that antimitotic reagents like Taxotere upregulated the reporter through cell cycle arrest in the M phase. Noninvasive longitudinal bioluminescence imaging further demonstrated an upregulation of the reporter consistent with mitotic arrest induced in tumor xenograft models. Induction of this reporter was also observed with a kinesin spindle protein inhibitor, which causes cell cycle blockage in the M phase. CONCLUSIONS: Our results demonstrate that the cyclin B-Luc reporter can be used to image whether compounds are capable, in vivo, of causing an M phase arrest and/or altering cyclin B turnover. This reporter can also be potentially used in high-throughput screening efforts aimed at discovering novel molecules that will cause cell cycle arrest at the M phase in cultivated cell lines and animal models.


Assuntos
Pontos de Checagem do Ciclo Celular , Luminescência , Mitose , Imagem Molecular/métodos , Animais , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclina B1/metabolismo , Docetaxel , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Luciferases/metabolismo , Camundongos , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tela Subcutânea/efeitos dos fármacos , Taxoides/farmacologia , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Imaging Biol ; 14(1): 79-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21394533

RESUMO

PURPOSE: The purpose of this study was to evaluate the binding specificity of the radiolabeled glucagon-like peptide 1 receptor (GLP-1R) agonist (Lys4°(DOTA)NH2)Exendin-4 in the pancreas using a combination of ex vivo autoradiography and immunohistochemistry. PROCEDURES: Sprague-Dawley rats were administered [64Cu](Lys4°(DOTA)NH2)Exendin-4 i.v. with or without unlabeled Exendin (9-39) to determine binding specificity. Similar experiments were performed using Zucker diabetic fatty (ZDF) and Zucker lean (ZLC) rats. Animals were euthanized and the pancreas was extracted, immediately frozen, and sectioned. The sections were apposed to phosphor imaging plates, scanned, and immunostained for insulin. RESULTS: Co-registration of the autoradiographic and immunohistochemical images revealed that [64Cu] (Lys4°(DOTA)NH2)Exendin-4 specific binding was restricted to islet cells. This binding was blocked by the co-administration of Exendin(9-39) indicating that the radiotracer uptake is mediated by GLP-1R. Uptake of [64Cu](Lys4°(DOTA)NH2)Exendin-4 was greatly decreased in the pancreas of ZDF rats. CONCLUSIONS: Ex vivo autoradiography results using [64Cu](Lys4°(DOTA)NH2)Exendin-4 suggest that GLP-1R agonists based on Exendin-4 are attractive PET ligands for the in vivo determination of ß-cell mass.


Assuntos
Autorradiografia/métodos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/diagnóstico por imagem , Imagem Molecular/métodos , Peptídeos , Receptores de Glucagon/agonistas , Peçonhas , Animais , Radioisótopos de Cobre , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Compostos Heterocíclicos com 1 Anel , Imuno-Histoquímica , Células Secretoras de Insulina/metabolismo , Masculino , Peptídeos/química , Peptídeos/farmacocinética , Cintilografia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores de Glucagon/metabolismo , Peçonhas/química , Peçonhas/farmacocinética
8.
Assay Drug Dev Technol ; 7(4): 391-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19689207

RESUMO

beta-Galactosidase (beta-gal) (encoded by the lacZ gene) has been widely used as a transgene reporter enzyme. The ability to image lacZ expression in living transgenic animals would further extend the use of this reporter. It has been reported that 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)-beta-d-galactopyranoside (DDAOG), a conjugate of beta-galactose and 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one), is not only a chromogenic lacZ substrate but that the cleavage product has far-red fluorescence properties detectable by in vivo imaging. In an attempt to noninvasively image lacZ expression in vivo, we applied fluorescence imaging to a G protein-coupled receptor (GPR56), knockout (KO) mouse model, in which the lacZ gene is introduced in the GPR56 locus. Compared to wild-type (WT) mice, GPR56KO/LacZ mice showed three- to fourfold higher fluorescence intensity in the head area 5 min after tail-vein injection of DDAOG. beta-Gal staining in sections of whole brain showed strong lacZ expression in homozygotes, but not in WT mice, consistent with lacZ activity detected by in vivo imaging. The kidneys were also visualized with fluorescence imaging both in vivo and ex vivo, consistent with beta-gal staining findings. Our results demonstrate that fluorescence imaging can be used for in vivo real-time detection of lacZ activity by fluorescence imaging in lacZ transgenic mice. Thus, this technology can potentially be used to noninvasively image changes of certain endogenous molecules and/or molecular pathways in transgenic animals.


Assuntos
Expressão Gênica/genética , Óperon Lac/genética , Animais , Corantes , Galactosidases/química , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Fenótipo , Receptores Acoplados a Proteínas G/genética , Processamento de Sinais Assistido por Computador , Transfecção , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
9.
Mol Imaging Biol ; 11(4): 246-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19130142

RESUMO

PURPOSE: The in vitro and in vivo evaluation of the selective, high affinity (human CB1 IC(50) 0.49 nM) inverse agonist CB1R tracer [(11)C]CB-119, a close analog of the previously disclosed [(18)F]MK-9470, was undertaken. PROCEDURES: [(11)C]CB-119 was synthesized with high specific activity by alkylation of a phenolic precursor with [(11)C]methyl iodide. In vitro autoradiographic studies using rhesus brain slices were carried out using [(3)H]CB-119, and in vivo imaging studies were carried out using [(11)C]CB-119 in rhesus monkeys under baseline and blocked conditions. RESULTS: Autoradiographic studies in rhesus brain showed the expected distribution pattern for CB1R with highest binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Lower binding was seen in the posterior hypothalamus, ventral tegmental area, and periventricular gray area, and the lowest binding was in the thalamic nuclei. The binding of [(3)H]CB-119 was fully blocked by the addition of 10 microM CB-119. Rhesus positron emission tomography imaging studies showed very good brain uptake and a distribution pattern consistent with that seen in the autoradiographic studies. The kinetics of tracer uptake was slow. The brain uptake was blocked by pretreatment with taranabant, a CB1R inverse agonist. The specific signal (total/nonspecific) in rhesus putamen at 90 min was approximately 6:1. CONCLUSIONS: [(11)C]CB-119 is a suitable tracer for imaging central CB1 receptors.


Assuntos
Amidas/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Autorradiografia , Radioisótopos de Carbono , Ligantes , Macaca mulatta , Ligação Proteica , Receptor CB1 de Canabinoide/agonistas , Distribuição Tecidual , Trítio/química
10.
Proc Natl Acad Sci U S A ; 104(23): 9800-5, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17535893

RESUMO

[(18)F]MK-9470 is a selective, high-affinity, inverse agonist (human IC(50), 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [(18)F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4-5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [(18)F]MK-9470 very similar to that seen in monkeys, with very good test-retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [(18)F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [(18)F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists.


Assuntos
Encéfalo/anatomia & histologia , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Receptor CB1 de Canabinoide/ultraestrutura , Amidas/metabolismo , Animais , Autorradiografia , Encéfalo/metabolismo , Radioisótopos de Flúor , Humanos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Masculino , Estrutura Molecular , Piridinas/metabolismo , Receptor CB1 de Canabinoide/metabolismo
11.
Pharmacol Biochem Behav ; 84(1): 158-61, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16757017

RESUMO

MPTP treatment has been used in mice to cause dopaminergic neuronal cell loss and subsequent behavioral abnormalities. As such, this animal model is often used as a method for the characterization of putative novel therapeutics for disease states characterized by dopamine loss, such as Parkinson's disease. Previous reports of behavioral abnormalities in mice following MPTP intoxication, however, have been conflicting. For example, open field spontaneous activity has been reported to increase, decrease or not change in MPTP treated mice. Accordingly, a more robust and direct functional measure of MPTP-induced central dopamine depletion is needed. In the present manuscript, we report on the characterization of amphetamine-induced locomotor activity as a sensitive functional endpoint for dopamine loss following MPTP treatment. We found that the amphetamine-induced locomotor activity of C57BL/6 mice was reduced in a dose-dependent manner following treatment with MPTP. This reduction of activity was associated with decreases in central dopamine levels. Further, the potential for use of this endpoint to evaluate putative therapeutics is exemplified by the amelioration of these effects following pre-treatment with the MAO-B inhibitor selegiline.


Assuntos
Anfetamina/farmacologia , Locomoção/efeitos dos fármacos , N-Metilaspartato/farmacologia , Selegilina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...