Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174446, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964415

RESUMO

Bioavailability of potentially toxic elements (PTEs) from the Earth's crust in the soil, e.g., As, Hg, Tl, and Pb, can pose a potential environmental and health risk because of human activities, especially related to mining extraction. The biomonitoring allows to detect PTE contamination through their measurement in living organisms as trees. However, the choice of which plant species and tissue to analyse is a key point to be evaluated in relation to PTE absorption and translocation. The aim of this work was to assess the As, Hg, Tl, and Pb distribution in Castanea sativa Mill. plant tissues, given its importance for both biomass and food production. The study identified two sites in the Alpi Apuane (Italy), with similar environmental conditions (e.g., elevation, exposure, forest type, and tree species) but different soil PTE levels. The topsoil was characterized, and the PTE fractions with different bioavailability were measured. The PTE concentrations were also analysed in chestnut plant tissues (leaves, bark, wood, nuts, and shells) in parallel with and evaluation of plant health status through the determination of micro and macronutrient concentrations and the leaf C and N isotope composition (δ13C or δ15N). Chestnut trees showed a good health status highlighting its suitability for Tl, As, Hg, and Pb biomonitoring, displaying a tissue-specific PTE allocation. Thallium and Hg were detected in all plant tissues at similar concentrations, As was found in leaves, wood, and nuts while Pb only in the bark. The δ15N negatively correlated with leaf Mn and Tl concentrations, suggesting possible changes in N source and/or plant metabolism due to the high contamination level and acid soil pH. Thallium in La Culla site trees was associated with its presence in the carbonate rocks but not in the topsoil, highlighting the potentiality of chestnut in providing valuable information for geochemical surveying.

2.
Environ Sci Pollut Res Int ; 28(29): 39692-39707, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33761078

RESUMO

The aim of this study was to evaluate the effectiveness of a landfarming process (LP) in recovering sediments at different biodegradation phases: phytoremediated dredged sediments (PDS) and fresh dredged sediments (FDS). The PDS landfarming was applied to (1) reduce residual contamination and (2) improve the biological activities in order to obtain a decontaminated matrix rich in organic matter and enzymatic activity to be reused as agronomic substrate. In 3 months of LP, a microbial activity stimulation (from 7 to 48%) and a decrease in organic contamination (about 15%) were recorded. In addition, no phytotoxicity and the content in total organic carbon and nitrogen make the sediments suitable to be reused in agriculture. The FDS landfarming was carried out to (1) reduce water content, (2) transform the organic matter into a more stable form, and (3) decrease organic contaminant level. Five months of LP led to a considerable reduction in water content (40%) and to the activation of microbial biomass metabolism (from 4 to 50 times higher), which achieved proper mineralization of organic matter and contaminants (polycyclic aromatic hydrocarbons near to zero and a total petroleum hydrocarbon reduction of about 60%). The LP also enhanced the stoichiometric ratios of nutrients and enzymes. In conclusion, the LP was a promising and economical methodology to improve the physical, chemical, and biological properties of polluted sediments at different biodegradation phases, creating a substrate ready for several environmental applications. Notably, the PDS resulted appropriate for agricultural use and FDS for civil applications.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Sedimentos Geológicos , Hidrocarbonetos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Environ Sci Pollut Res Int ; 28(13): 16323-16333, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387308

RESUMO

The plant association of Populus alba L. 'Villafranca', Brassica oleracea var. acephala sebellica (kale), and B. oleracea var. capitata 'sonsma' (cabbage) was exposed to Zn, Cd, and exogenous caffeine (13CFN)-contaminated water under growth chamber conditions. In the short term of treatment (15 days), poplar increased the root dry biomass (+ 25%) and decreased the chlorophyll content in new leaves (- 32%), compared to control. On the contrary, cabbage decreased the root dry biomass, enhancing the shoot dry biomass (+ 50%). Heavy metals were mainly concentrated in plant roots and in poplar reached the highest concentrations of 705 ± 232.6 and 338 ± 85.5 µg g-1 DW for Zn and Cd, respectively. The ability of poplar to accumulate more Zn and Cd than kale and cabbage in plant biomass was confirmed by heavy metal contents, following the order: poplar > kale = cabbage. However, poplar and Brassica sp. association was very useful for Zn and Cd decontaminations as reported by the bioconcentration factors (> 1). The concentration of 13CFN was below 2.4 ng g-1 FW in poplar and 7.4 ng g-1 FW in Brassica species, suggesting the caffeine uptake and degradation by plant association. Under our experimental conditions, the removal efficiency of the system was upper to 79%, indicating the capability of Populus-Brassica association to efficiently remove Zn, Cd, and 13CFN from mixed inorganic-organic-contaminated water in short term.


Assuntos
Brassica , Metais Pesados , Populus , Poluentes do Solo , Folhas de Planta/química , Poluentes do Solo/análise , Água
4.
Environ Sci Pollut Res Int ; 26(25): 25564-25572, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267403

RESUMO

Phthalates are micro-pollutants of great concern due to their negative effects on ecosystem functioning and human health. Thanks to its capability in uptake and accumulation of organic pollutants, Populus alba L. "Villafranca" clone could be a good candidate for reducing the impacts derived by the persistence of such compounds in the environment. We investigated plant response and uptake of dioctyl phthalate (DOP) by poplar, grown in hydroponics condition, for 21 days with 0, 40, and 400 µg L-1 of d4-DOP. Treated plants, after 21 days of 400 µg L-1 d4-DOP, showed an increase in root dry biomass (+ 29%) at the expense of aerial parts (- 8%) compared with control. The root development could be sustained by the increase of Mg uptake by poplar. LC-MS/MS analysis demonstrated the uptake and accumulation in roots of d4-DOP starting from day one (3.5 ± 3.29 and 7.1 ± 3.28 in 40 and 400 µg L-1 d4-DOP respectively), despite volatilization of d4-DOP was observed from nutritive solution. The chemical interaction between d4-DOP and Zn occurred in roots of plants treated with the high d4-DOP concentration, without limiting the Zn concentration in leaves. Results confirm the high tolerance of "Villafranca" clone to xenobiotic and suggest the poplar capability in d4-DOP uptake and accumulation at root level.


Assuntos
Dietilexilftalato/química , Populus/efeitos dos fármacos , Biodegradação Ambiental , Transporte Biológico , Biomassa , Cromatografia Líquida , Dietilexilftalato/metabolismo , Ecossistema , Hidroponia , Folhas de Planta , Raízes de Plantas , Populus/metabolismo , Espectrometria de Massas em Tandem , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...