Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765561

RESUMO

Nanoparticle-filled polymers (i.e., nanocomposites) can exhibit characteristics unattainable by the unfilled polymer, making them attractive to engineer structural composites. However, the transition of particulate fillers from the micron to the nanoscale requires a comprehensive understanding of how particle downsizing influences molecular interactions and organization across multiple length scales, ranging from chemical bonding to microstructural evolution. This work outlines the advancements described in the literature that have become relevant and have shaped today's understanding of the processing-structure-property relationships in polymer nanocomposites. The main inorganic and organic particles that have been incorporated into polymers are examined first. The commonly practiced methods for nanoparticle incorporation are then highlighted. The development in mechanical properties-such as tensile strength, storage modulus and glass transition temperature-in the selected epoxy matrix nanocomposites described in the literature was specifically reviewed and discussed. The significant effect of particle content, dispersion, size, and mean free path on thermomechanical properties, commonly expressed as a function of weight percentage (wt.%) of added particles, was found to be better explained as a function of particle crowding (number of particles and distance among them). From this work, it was possible to conclude that the dramatic effect of particle size for the same tiny amount of very small and well-dispersed particles brings evidence that particle size and the particle weight content should be downscaled together.

2.
Materials (Basel) ; 14(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808932

RESUMO

The present study introduces the analysis of single-lap co-cured joints of thermoplastic self-reinforced composites made with reprocessed low-density polyethylene (LDPE) and reinforced by ultra-high-molecular-weight polyethylene (UHMWPE) fibers, along with a micromechanical analysis of its constituents. A set of optimal processing conditions for manufacturing these joints by hot-press is proposed through a design of experiment using the response surface method to maximize their in-plane shear strength by carrying tensile tests on co-cured tapes. Optimal processing conditions were found at 1 bar, 115 °C, and 300 s, yielding joints with 6.88 MPa of shear strength. The shear failure is generally preceded by multiple debonding-induced longitudinal cracks both inside and outside the joint due to accumulated transversal stress. This composite demonstrated to be an interesting structural material to be more widely applied in industry, possessing extremely elevated specific mechanical properties, progressive damage of co-cured joints (thus avoiding unannounced catastrophic failures) and ultimate recyclability.

3.
Materials (Basel) ; 11(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949860

RESUMO

The current investigation was conducted on gres porcelain stoneware, a robust, impermeable and aesthetically pleasing type of ceramic mainly used for flooring, characterizing its resistance to bending and low-velocity impact, both representative efforts to which flooring tiles are constantly subjected as a consequence of the fall of objects and microsubsidences. The mechanical characterization was made through experimental tests following an adapted low-velocity impact testing routine, and the model was by validated numerical simulation through the explicit code software LS-DYNA based on the Johnson⁻Holmquist constitutive material model. Specimens were tested before and after an annealing cycle industrially used to allow porcelain folding. The thermal treatment demonstrated to infer a decrease in mechanical resistance on the material, understood as a consequence of its elevated maximum temperature and fast cooling rate. The numerical model calibrated successfully allows predicting the behavior of gres porcelain before and after annealing against low-velocity impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...