Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 252: 126284, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572821

RESUMO

Agarose hydrogels are three-dimensional hydrophilic polymeric frameworks characterised by high water content, viscoelastic properties, and excellent ability as cell and drug delivery systems. However, their hydrophilicity as gel systems makes loading of hydrophobic drugs difficult and often ineffective. The incorporation of amphiphilic molecules (e.g. cyclodextrins) into hydrogels as hosts able to form inclusion complexes with hydrophobic drugs could be a possible solution. However, if not properly confined, the host compounds can get out of the network resulting in uncontrolled release. Therefore, in this work, ß-cyclodextrins-based host-guest supramolecular hydrogel systems were synthesised, with ß-cyclodextrins (ß-CD) covalently bound to the polymeric network, preventing leakage of the host molecules. Hydrogels were prepared at two different ß-CD-functionalized polyvinyl alcohol (PVA)/agarose ratios, and characterised chemically and physically. Then ibuprofen, a drug often used as a gold standard in studies involving ß-CD both in its hydrophilic and hydrophobic forms, was selected to investigate the release behavior of the synthesised hydrogels and the influence of ß-CD on the release. The presence of ß-CD linked to the polymeric 3D network ensured a higher and prolonged release profile for the hydrophobic drug and also seemed to have some influence on the hydrophilic one.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ibuprofeno , Sefarose , Hidrogéis/química , beta-Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Ciclodextrinas/química , Polímeros
2.
Carbohydr Polym ; 301(Pt A): 120309, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436870

RESUMO

Hydrogels based on hyaluronic acid (HA) and agarose-carbomer (AC) raised an increasing interest as drug delivery systems. The complex architecture of the polymer network, such as mesh size, HA molecular weight and drug-polymer non covalent interactions across the 3D polymer matrix strongly influence the release capability/profile of these materials. In this study, AC-HA hydrogels with different mesh sizes have been prepared and characterised. High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy has been used to investigate the motion of two drugs, such as ethosuximide (neutral molecule) and sodium salicylate (net negative charge) within the AC and AC-HA hydrogel networks. Analysis of the experimental data provides evidence of superdiffusive motion for all formulations containing sodium salicylate, while ethosuximide molecules undergo unrestricted diffusion within the gel matrix. We further speculate that the superdiffusive motion, observed at the nanoscale, can be responsible for the faster release of sodium salicylate from all hydrogel formulations.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Salicilato de Sódio , Etossuximida , Espectroscopia de Ressonância Magnética , Sefarose/química
3.
ACS Omega ; 7(47): 42845-42853, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467913

RESUMO

Bijels (bicontinuous interfacially jammed emulsion gels) raised an increasing interest as biomaterials for controlled drug delivery due to their biphasic nature organized in mesoscopic tortuous domains. Two bijel formulations were prepared and explored as delivery systems for both hydrophilic and lipophilic drugs, ethosuximide and dimethyl fumarate. The two bijel-like structures, based on polymerized ε-caprolactone/water, differ in the stabilizing nanoparticle hydroxyapatite (inorganic) and nanogel-based nanoparticles (organic). Diffusion nuclear magnetic resonance spectroscopy has been used to characterize the bijel structure and the transport behavior of the drug molecules confined within the water/organic interconnected domains. A reduced diffusion coefficient is observed for several concentrations of the drugs and both bijel formulations. Moreover, in vitro release profiles also reveal the effect of the microstructure and drug-nanoparticle interactions.

4.
Materials (Basel) ; 15(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363050

RESUMO

Choline-based deep eutectic solvents (DESs) are potential candidates to replace flammable organic solvent electrolytes in lithium-ion batteries (LIBs). The effect of the addition of a lithium salt on the structure and dynamics of the material needs to be clarified before it enters the battery. Here, the archetypical DES choline chloride:urea at 1:2 mole fraction has been added with lithium chloride at two different concentrations and the effect of the additional cation has been evaluated with respect to the non-doped system via multinuclear NMR techniques. 1H and 7Li spin-lattice relaxation times and diffusion coefficients have been measured between 298 K and 373 K and revealed a decrease in both rotational and translational mobility of the species after LiCl doping at a given temperature. Temperature dependent 35Cl linewidths reflect the viscosity increase upon LiCl addition, yet keep track of the lithium complexation. Quantitative indicators such as correlation times and activation energies give indirect insights into the intermolecular interactions of the mixtures, while lithium single-jump distance and transference number shed light into the lithium transport, being then of help in the design of future DES electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...