Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37817378

RESUMO

Li-O2 batteries (LOB) performance degradation ultimately occurs through the accumulation of discharge products and irreversible clogging of the porous electrode during the cycling. Electrode binder degradation in the presence of reduced oxygen species can result in additional coating of the conductive surface, exacerbating capacity fading. Herein, a facile method to fabricate free-standing is established, binder-free electrodes for LOBs in which multi-wall carbon nanotubes form cross-linked networks exhibiting high porosity, conductivity, and flexibility. These electrodes demonstrate high reproducibility upon cycling in LOBs. After cell death, efficient and inexpensive methods to wash away the accumulated discharge products are demonstrated, as reconditioning method. The second life usage of these electrodes is validated, without noticeable loss of performance. These findings aim to assist in the development of greener high energy density batteries while reducing manufacturing and recycling costs.

2.
ACS Appl Mater Interfaces ; 15(51): 59319-59328, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085792

RESUMO

Li-ion battery cathode active materials obtained from different sources or preparation methods often exhibit broadly divergent performance and stability despite no obvious differences in morphology, purity, and crystallinity. We show how state-of-the-art, commercial, nominally single crystalline LiNi0.6Mn0.2Co0.2O2 (NMC-622) particles possess extensive internal nanostructure even in the pristine state. Scanning X-ray diffraction microscopy reveals the presence of interlayer strain gradients, and crystal bending is attributed to oxygen vacancies. Phase contrast X-ray nano-tomography reveals two different kinds of particles, welded/aggregated, and single crystal like, and emphasizes the intra- and interparticle heterogeneities from the nano- to the microscale. It also detects within the imaging resolution (100 nm) substantial quantities of nanovoids hidden inside the bulk of two-thirds of the overall studied particles (around 3000), with an average value of 12.5%v per particle and a mean size of 148 nm. The powerful combination of both techniques helps prescreening and quantifying the defective nature of cathode material and thus anticipating their performance in electrode assembly/battery testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...