Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 221: 113191, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321424

RESUMO

HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale structures of a large variety of materials in three dimensions. It is especially useful for studying crystalline nanoparticles, where conventional TEM tomography suffers from diffraction-related artefacts. Unfortunately, the acquisition of a HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore challenging to investigate samples that do not withstand long electron beam illumination or to acquire a large number of tilt series during a single TEM experiment. The latter would facilitate obtaining more statistically representative 3D data, and enable performing dynamic in situ 3D characterizations with a finer time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection "movie" and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation of these techniques has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series, acquired for various metallic nanoparticles with different shapes and sizes. We discuss the necessary data processing and provide a general guideline that can be used to determine the most optimal acquisition strategy for specific electron tomography experiments.

2.
Small ; 15(42): e1902791, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448568

RESUMO

For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It is presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including energy-dispersive X-ray tomography, and finite element method modeling to support the observations. From the electron tomography results, the core-shell structure can be clearly visualized and the spatial distribution of gold and silver atoms can be quantified. Theoretical simulations are performed to demonstrate that even though UV-vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.

3.
ACS Nano ; 13(6): 6522-6530, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31091074

RESUMO

Multifunctional metal nanoparticles (NPs) such as anisotropic multimetallic NPs are crucial for boosting nanomaterial-based applications. Advanced synthetic protocols exist to make a large variety of such nanostructures. However, a major limiting factor for the usability of them in real life applications is their stability. Here, we show that Au/Pd octopods, eight-branched nanocrystals with O h symmetry, with only a low amount of Pd exhibited a high thermal stability and maintained strong plasmon resonances up to 600 °C. Furthermore, we study the influence of the composition, morphology, and environment on the thermal stability and define key parameters for the design of thermally stable multifunctional NPs.

4.
Nanoscale ; 10(48): 22792-22801, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30512028

RESUMO

A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars' plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.

5.
J Phys Chem C Nanomater Interfaces ; 122(27): 15706-15712, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30245760

RESUMO

Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies-instead of delocalized ones-indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.

6.
ACS Appl Mater Interfaces ; 9(19): 16168-16177, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28418651

RESUMO

Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (Rf) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller Rf, the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA