Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 777: 146055, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684757

RESUMO

A promising concept for sampling contaminants of emerging concern (CECs) using a home-made Simple Teabag Equilibrium Passive Sampler (STEPS) containing hydrophilic divinylbenzene (h-DVB) sorbent is presented and evaluated for application in estuarine systems. The uptake of a multi-class mixture of CECs with a broad polarity range (Log P ranging from -0.1 to 9.9) was investigated in static exposure batch experiments. Sampling rates (Rs) and equilibrium partitioning coefficients (Ksw) were determined for up to 74 CECs. Fast uptake (Rs = 0.3-12 L d-1) was noticed and the STEPS attained equilibrium partitioning after 1 to 2 weeks of exposure, with Log Ksw ranging from 4.1 to 6.5 L kg-1. Field application of this novel h-DVB containing STEPS, followed by ultra-high performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry, revealed the presence of up to 40 steroidal hormones, (alkyl)phenols, phthalates, pharmaceuticals, personal care products, and pesticides in the Belgian Part of the North Sea. The measured trace concentrations (from 0.003 ng L-1 to 1.9 µg L-1) and good precision (average RSD < 30%, n = 3) demonstrate the STEPS as fit-for-purpose for micropollutant analysis in the marine environment.

2.
Environ Toxicol Chem ; 40(5): 1353-1367, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465261

RESUMO

Neonicotinoid insecticides have become of global concern for the aquatic environment. Harpacticoid copepods are among the organisms most sensitive to neonicotinoids. We exposed the brackish copepod Nitocra spinipes to 4 neonicotinoid insecticides (clothianidin, imidacloprid, thiacloprid, and thiamethoxam) to investigate acute toxicity on adults (96-h exposure) and effects on larval development (7-d exposure). We used these results in combination with publicly available ecotoxicity data to derive environmental quality standards (EQS). These EQS were ultimately used in a single-substance and mixture risk assessment for the Belgian part of the North Sea. Acute toxicity testing revealed that immobilization is a more sensitive endpoint than mortality, with 96-h median effect concentration (EC50) values of 6.9, 7.2, 25, and 120 µg L-1 for clothianidin, thiacloprid, imidacloprid, and thiamethoxam, respectively. In addition, the larval development tests resulted in 7-d no-observed-effect concentrations (NOECs) of 2.5, 2.7, 4.2, and >99 µg L-1 for clothianidin, thiacloprid, imidacloprid, and thiamethoxam, respectively. The derived saltwater annual average (AA-)EQS were 0.05, 0.0048, 0.002, and 0.016 µg L-1 for clothianidin, thiacloprid, imidacloprid, and thiamethoxam, respectively. Finally, the risk characterization revealed some exceedances of the AA-EQS in Belgian harbors for imidacloprid (number of exceedances, n = 2/4), for thiacloprid (n = 1/4), for thiamethoxam (n = 1/4), and for the mixture of the 4 neonicotinoids (n = 4/4), but not at the open sea. At the open sea site, the toxic unit sums relative to the AA-EQS were 0.72 and 0.22, suggesting no mixture risk, albeit with a relatively small margin of safety. Including short-term EC10 (96-h) values of N. spinipes for the AA-EQS derivation led to a refinement of the AA-EQS for clothianidin and thiamethoxam, suggesting their use for the AA-EQS derivation because one of the overarching goals of the definition of EQS is to protect species at the population level. Environ Toxicol Chem 2021;40:1353-1367. © 2021 SETAC.


Assuntos
Copépodes , Inseticidas , Poluentes Químicos da Água , Animais , Guanidinas , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Tiametoxam , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 765: 142748, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160665

RESUMO

Organisms in the marine environment are being exposed to an increasing variety of chemicals. This research presents an effect-based monitoring method for the derivation of a margin of safety for environmentally realistic chemical mixtures. The method is based on a combination of passive sampling and ecotoxicity testing. First, passive sampling was performed using H2O-philic divinylbenzene Speedisks during 3 sampling campaigns between 2016 and 2018 at 4 sampling locations in the Belgian part of the North Sea. Next, we exposed the marine diatom Phaeodactylum tricornutum to Speedisk extracts that were reconstituted in HPLC-grade water and defined the MoS of each sample as the highest no-observed effect concentration, expressed as relative enrichment factor (REF). A REF was defined by comparing the concentrations of 89 personal care products, pesticides and pharmaceuticals in the biotest medium with those measured in water grab samples to relate exposure concentrations in the tests to environmental concentrations. Across eight marine samples, diatom growth inhibition was observed at REF ≥ 3.2 and margins of safety were found between REF 1.1-11.0. In addition, we found that reconstitution of extracts in HPLC-water was suitable to overcome the solvent-related challenges in biotesting that are usually associated with passive sampler extract spiking, whilst it still allowed REFs up to 44 in the biotest medium to be achieved. This method, however, likely covers mainly the polar fraction of environmentally realistic chemical mixtures and less the non-polar fraction. Nevertheless, for 5 out of 8 samples, the Margin of Safety (MoS) was found to be lower than 10, which represents the typically lowest possible assessment factor applied to no effects ecotoxicological data in conventional environmental risk assessments, suggesting ecological risks for these samples.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Bélgica , Ecotoxicologia , Mar do Norte , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 53(18): 10803-10812, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31378062

RESUMO

Hydrophilic divinylbenzene (DVB) (Bakerbond) has surfaced as a promising sorbent for active sampling of analytes from aqueous matrices over a very broad polarity range. Given this, hydrophilic DVB may likewise offer potential for passive sampling, if sorbent/water partitioning coefficients (Ksw) were to be available. In this work, static exposure batch experiments were performed to quantitatively study the equilibrium sorption of 131 environmentally relevant organic contaminants (P values ranging from -1.30 to 9.85) on hydrophilic DVB. The superior affinity of hydrophilic DVB, as compared to Oasis HLB, for compounds with a broad polarity range was confirmed by functional Fourier-transform infrared spectroscopy and Raman characterization, demonstrating the presence of carboxyl moieties. Concentration effects were studied by increasing compound concentrations in mixture experiments and resulted in the steroidal endocrine disrupting compounds in higher Ksw, while lower Ksw were obtained for the (alkyl)phenols, personal care products, pesticides, pharmaceuticals, and phthalates. Nevertheless, Ksw remained constant in the said design for equilibrium water concentrations at environmentally relevant seawater levels. An independent analysis of thermodynamic parameters (change in enthalpy, entropy, and Gibbs free energy) revealed the nature of the main partitioning processes. While polar (log P < 4) compounds were mainly served by physisorption, nonpolar (log P > 4) compounds also exhibited binding by multiple hydrogen bonding. In conclusion, this research facilitates the future application of hydrophilic DVB for active as well as passive sampling in the analysis of organic contaminants for monitoring purposes and for toxicity testing.


Assuntos
Praguicidas , Poluentes Químicos da Água , Interações Hidrofóbicas e Hidrofílicas , Compostos de Vinila
5.
Mar Pollut Bull ; 142: 350-360, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232313

RESUMO

Knowledge about the occurrence of emerging organic micropollutants in the marine environment is still very limited, especially when focusing on the Belgian Part of the North Sea (BPNS). This study therefore optimized and validated a Speedisk® based SPE and LC-Q-Orbitrap HRMS method to tackle the challenge of measuring the expected ultra-trace concentrations in seawater. This method was applied to 18 samples collected at different locations in the open sea and harbor of the BPNS. Forty-eight compounds, among which several pharmaceuticals, personal care products or pesticides described in the EU Watchlist, were detected - some for the first time in seawater - at concentrations ranging up to 156 ng L-1. Moreover, the untargeted screening potential of the newly developed HRMS method was highlighted by revealing the presence of up to 1300 unknown components in a single sample and by assigning molecular formulae to those components demonstrating high discriminative potential between samples.


Assuntos
Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Bélgica , Cromatografia Líquida de Alta Pressão/métodos , Cosméticos/análise , Mar do Norte , Praguicidas/análise , Preparações Farmacêuticas/análise , Reprodutibilidade dos Testes , Água do Mar/química
6.
Environ Toxicol Chem ; 38(6): 1313-1322, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924961

RESUMO

To estimate mixture effects caused by the high number of chemicals simultaneously present in the environment, methods for routine effect assessment of environmentally realistic contaminant mixtures are needed. We repeatedly exposed the marine diatom Phaeodactylum tricornutum to SpeediskTM passive sampler extracts and observed statistically significant growth stimulation up to 6 and 7% for samples from inside and outside the harbor of Zeebrugge, respectively. These effects were found at summed contaminant concentrations (159-166 ng L-1 ) that were within a 1.1- to 2.4-fold range of those observed in grab water samples taken during sampler deployment. These stimulatory effects were confirmed in 2 independent tests with extracts stored for <1 or 8 mo that had undergone limited sample handling, whereas no effects were observed for extracts that had been stored for 16 mo that had undergone repeated handling (notably repeated freezing and thawing) before biotest spiking. Targeted analysis by ultra-high performance liquid chromatography was performed to quantify 88 personal care products (n = 8), pesticides (n = 28), and pharmaceuticals (n = 52). Among these compounds, multivariate statistical analysis put forward the ß-blocker atenolol as explaining most of the observed variation in mixture composition between the growth-stimulating and no effect-causing extracts. However, when tested individually over the entire concentration range present in the extracts, atenolol did not have any effect on P. tricornutum, suggesting that nontargeted substances in the extracts may have contributed to the observed stimulatory effects. Nevertheless, the present study shows that exposure to contaminant mixtures at environmentally realistic concentrations can lead to small but significant growth stimulation effects on the marine diatom P. tricornutum. Environ Toxicol Chem 2019;38:1313-1322. © 2019 SETAC.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Análise Discriminante , Ecotoxicologia , Monitoramento Ambiental , Análise dos Mínimos Quadrados , Análise Multivariada , Análise de Componente Principal
7.
Anal Chim Acta ; 1049: 141-151, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30612645

RESUMO

Plasticizers and other plastics additives have been extensively used as ingredients of plastics and are as a result thereof easily released in the aquatic environment, due to different physical diffusion processes. In this context, a dedicated method was developed for the simultaneous quantification of 27 known and a virtually unlimited number of unknown alkylphenols, Bisphenol A and phthalates in 2 aquatic matrices, i.e. sea- and freshwater. To this extent, a novel instrumental HESI-UHPLC-HRMS (heated electro-spray ionization ultra-high performance liquid chromatographic high resolution mass spectrometric) method was devised for the simultaneous analysis of 7 phenols (i.e. 6 alkylphenols and Bisphenol A) and 20 phthalates within 10 min. Thereafter, a solid-phase extraction protocol was statistically (95% confidence interval, p > 0.05) optimized based on experimental designs. The method was proven fit-for-purpose through a successful validation at environmentally relevant nanomolar concentrations. Analytical precautions were taken for minimizing false-positive results to suppress in-house contamination. The method demonstrated an excellent analytical performance across all known plasticizers and plastics additives for sea- and freshwater, revealing good linearity (R2 > 0.99, n = 39), stable recoveries (98.5-105.8%), satisfactory repeatability (RSD < 8%, n = 54) and reproducibility (RSD < 10%, n = 36). Subsequently, a novel analytical strategy was devised for the tentative identification of unknown plasticizers and plastics additives using specific in-house determined fragments incorporated in a Python code. The applicability of the analytical platform was demonstrated by measuring 24 seawater samples. Interestingly, 16 out of 27 known plasticizers, plastics additives and primary metabolites could be quantified while the untargeted analysis uncovered 1042 compounds, whereof 5% (n = 46) could be assigned a plasticizer-plastics additive chemical identity, providing evidence for the severe plastic contamination status of our marine environment.

8.
Anal Chim Acta ; 984: 140-150, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843557

RESUMO

The lack of adequate strategies for monitoring endocrine disrupting compounds (EDCs) in the aquatic environment is emphasized in the European Water Framework Directive. In this context, a new UHPLC-HR-Q-Orbirtrap-MS multi-residue method was developed for the simultaneous measurement of 70 steroidal EDCs in two aquatic matrices, i.e. sea and fresh water. First, an instrumental APCI-UHPLC-HR-Q-Orbitrap-MS was devised for separating and detecting the EDC isomers and mass analogues, within 12.5 min per run. Next, an appropriate extraction was statistically optimised using a three-strep workflow (95% confidence interval, p > 0.05); including fractional factorial resolution IV, simplex lattice, and response surface methodological designs. The fitness-for-purpose of the method was demonstrated through successful validation at relevant environmental concentrations, i.e. the low nano- and picogram range. Method quantification limits ranged for the androgens (n = 33), oestrogens (n = 14), progestins (n = 12), and corticosteroids (n = 11) between, respectively, 0.13 and 5.00 ng L-1, 0.25 and 5.00 ng L-1, 0.13 and 2.50 ng L-1, and 0.50 and 5.00 ng L-1. Good linearity (R2 ≥ 0.99) and no lack of fit was observed (95% confidence interval, p > 0.05) for the 70 steroidal EDCs. In addition, good recovery (95-109%) and satisfactory repeatability (RSD < 8.5%, n = 18) and reproducibility (RSD < 10.5%, n = 12) were obtained. Finally, the applicability of the multi-residue method was demonstrated by measuring steroidal EDC in 28 sea water samples collected from four different locations during fall 2016 and winter 2017. Regarding the sea water samples, all the classes were ubiquitously present and included different metabolites, transformation product and or degradation products from the parent EDCs (n = 43).


Assuntos
Cromatografia Líquida de Alta Pressão , Disruptores Endócrinos/análise , Monitoramento Ambiental , Espectrometria de Massas , Poluentes Químicos da Água/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...