Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339164

RESUMO

Mosquito-borne Zika virus (ZIKV) is an emerging flavivirus of medical concern associated with neurological disorders. ZIKV utilizes apoptosis as a mechanism of cell killing. The structural M protein may play a role in flavivirus-induced apoptosis. The death-promoting capability of M has been restricted to an oligopeptide representing the residues M-32/40. Here, we evaluated the apoptosis inducing ability of the residues M-31/41 of ZIKV. The ZIKV M oligopeptide was associated to a soluble form of GFP (sGFP) and the resulting sGFP-M31/41 construct was assessed in Huh7 cells. Expression of sGFP-M31/41 can trigger apoptosis in Huh7 cells through caspase-3/7 activation. The translocation of sGFP-M31/41 in the endoplasmic reticulum was a prerequisite for apoptosis induction. The residues M-33/35/38 may play a critical role in the death-promoting activity of sGFP-M31/41. The effect of ZIKV M oligopeptide defined as ZAMP (for Zika Apoptosis M Peptide) on expression of a tumor-associated antigen was assayed on megakaryocyte-potentiating factor (MPF). Expression of MPF-ZAMP construct resulted in caspase-associated apoptosis activation in A549 and Huh7 cells. ZIKV has been proposed as an oncolytic virus for cancer therapy. The ability of the Zika M oligopeptide to confer death-promoting capability to MPF opens up attractive perspectives for ZAMP as an innovative anticancer agent.


Assuntos
Antígenos de Neoplasias/metabolismo , Apoptose , Proteínas Ligadas por GPI/metabolismo , Oligopeptídeos/metabolismo , Proteínas da Matriz Viral/química , Zika virus/química , Células A549 , Antígenos de Neoplasias/genética , Caspase 3/metabolismo , Caspase 7/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Ligadas por GPI/genética , Células HEK293 , Humanos , Mesotelina , Oligopeptídeos/química , Oligopeptídeos/genética
2.
Viruses ; 12(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167511

RESUMO

Mosquito-borne Zika virus (ZIKV) causes a severe congenital syndrome and neurological disorders in humans. With the aim to develop a live-attenuated ZIKV strain, we generated a chimeric viral clone ZIKALIVax with African MR766-NIID strain as backbone and the envelope E protein of epidemic Brazilian BeH810915 strain. The MR766-NIID residues E-T152/I156/Y158 were introduced into BeH810915 E protein leading to a nonglycosylated ZIKALIVax. Recently, we reported that the residues E-152/156/158 that are part of ZIKV glycan loop (GL) region might have an impact on the availability of neutralizing antibody epitopes on ZIKV surface. In the present study, we evaluated the antigenic reactivity of a synthetic 20-mer peptide representing the ZIKALIVax GL region. The GL-related peptide was effective for the detection of GL-reactive antibody in mouse anti-ZIKALIVax immune serum. We showed that the residue E-158 influences the antigenic reactivity of GL-related peptide. The ZIKALIVax peptide was effective in generating mouse antibodies with reactivity against a recombinant E domain I that encompasses the GL region. The GL peptide-reactive antibodies revealed that antigenic reactivity of E-domain I may be impacted by both residues E-152 and E-156. In conclusion, we proposed a role for the residues E-152/156/158 as key antigenic determinants of ZIKV glycan loop region.


Assuntos
Anticorpos Antivirais/sangue , Epitopos/imunologia , Peptídeos/imunologia , Polissacarídeos/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Zika virus/genética , Infecção por Zika virus/imunologia
3.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934824

RESUMO

Interferon-induced viperin (VP) was identified as playing an important role in the innate immune response against Zika virus (ZIKV). The 361 amino acid long human VP protein comprises of a highly conserved C-terminal region, which has been associated with VP antiviral properties against ZIKV. In the present study, we sought to determine whether the very last C-terminal amino-acid residues of VP might play a role in VP-mediated ZIKV inhibition. To address this issue, a recombinant human viperin (rVPwt) was overexpressed by transfection in human epithelial A549 cells. We confirmed that transient overexpression of rVPwt prior to ZIKV infection dramatically reduced viral replication in A549 cells. Deletion of the last 17 C-terminal amino acids of VP resulted in a higher expression level of mutant protein compared to wild-type VP. Mutational analysis revealed that residue substitution at positions 356 to 360 with five alanine led to the same phenotype. The charged residues Asp356, Lys358, and Asp360 were then identified to play a role in the weak level of VPwt protein in A549 cells. Mutant VP bearing the D360A substitution partially rescued ZIKV growth in A549 cells. Remarkably, a single Lys-to-Arg substitution at position 358 was sufficient to abrogate VP antiviral activity against ZIKV. In conclusion, our study showed that Asp356, Lys358, and Asp360 may have an influence on biochemical properties of VP. Our major finding was that Lys358 was a key amino-acid in VP antiviral properties against ZIKV.


Assuntos
Substituição de Aminoácidos , Antivirais/farmacologia , Proteínas Mutantes/metabolismo , Proteínas/genética , Zika virus/efeitos dos fármacos , Células A549 , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Humanos , Proteínas Mutantes/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/química , Proteínas/metabolismo , Proteínas Recombinantes/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos
4.
Virology ; 522: 199-208, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30036788

RESUMO

Zika virus (ZIKV) is an emerging pathogen linked to neurological disorders for which there is currently no targeted therapy. To identify host innate immune response proteins that restrict ZIKV replication, we treated monocytes and macrophages with toll-like receptor (TLR) agonists. Of those tested, the TLR7/8 agonist R848 (resiquimod) was the most potent inhibitor of ZIKV replication. RNA-seq analysis identified several genes strongly induced by R848 in monocytes. Testing of several of these for their ability to restrict ZIKV replication identified viperin, an interferon-induced gene active against several viruses. Transduction of microglial CHME3 cells with a viperin lentiviral expression vector rendered them resistant to ZIKV infection, preventing the synthesis of viral RNA and protein. CRISPR/Cas9 knock-out of viperin in macrophages relieved the block to infection, demonstrating that viperin is a major innate immune response protein able to block ZIKV replication. TLR agonists may be useful for the prophylactic or therapeutic treatment for ZIKV.


Assuntos
Antivirais/metabolismo , Imidazóis/metabolismo , Proteínas/metabolismo , Receptores Toll-Like/agonistas , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Monócitos/imunologia , Monócitos/virologia , Neuroglia/imunologia , Neuroglia/virologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução Genética , Zika virus/fisiologia
5.
Virology ; 500: 247-258, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27855354

RESUMO

Treatment of HIV-infected patients with IFN-α results in significant, but clinically insufficient, reductions of viremia. IFN induces the expression of several antiviral proteins including BST-2, which inhibits HIV by multiple mechanisms. The viral protein Vpu counteracts different effects of BST-2. We thus asked if Vpu proteins from IFN-treated patients displayed improved anti-BST-2 activities as compared to Vpu from baseline. Deep-sequencing analyses revealed that in five of seven patients treated by IFN-α for a concomitant HCV infection in the absence of antiretroviral drugs, the dominant Vpu sequences differed before and during treatment. In three patients, vpu alleles that emerged during treatment improved virus replication in the presence of IFN-α, and two of them conferred improved virus budding from cells expressing BST-2. Differences were observed for the ability to down-regulate CD4, while all Vpu variants potently down-modulated BST-2 from the cell surface. This report discloses relevant consequences of IFN-treatment on HIV properties.


Assuntos
Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Interferon-alfa/uso terapêutico , Proteínas Virais Reguladoras e Acessórias/genética , Alelos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , HIV-1/classificação , HIV-1/isolamento & purificação , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Fenótipo , Proteínas Virais Reguladoras e Acessórias/metabolismo
6.
mBio ; 7(6)2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27965453

RESUMO

Leukocidin ED (LukED) is a bicomponent pore-forming toxin produced by Staphylococcus aureus that lyses host cells by targeting the chemokine receptors CC chemokine receptor type 5 (CCR5), CXCR1, CXCR2, and DARC. In addition to its role as a receptor for LukED, CCR5 is the major coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and has been extensively studied. To compare how LukED and HIV-1 target CCR5, we analyzed their respective abilities to use CCR5/CCR2b chimeras to mediate cytotoxicity and virus entry. These analyses showed that the second and third extracellular loops (ECL) of CCR5 are necessary and sufficient for LukED to target the receptor and promote cell lysis. In contrast, the second ECL of CCR5 is necessary but not sufficient for HIV-1 infectivity. The analysis of CCR5 point mutations showed that glycine-163 is critical for HIV-1 infectivity, while arginine-274 and aspartic acid-276 are critical for LukED cytotoxicity. Point mutations in ECL2 diminished both HIV-1 infectivity and LukED cytotoxicity. Treatment of cells with LukED did not interfere with CCR5-tropic HIV-1 infectivity, demonstrating that LukED and the viral envelope glycoprotein use nonoverlapping sites on CCR5. Analysis of point mutations in LukE showed that amino acids 64 to 69 in the rim domain are required for CCR5 targeting and cytotoxicity. Taking the results together, this study identified the molecular basis by which LukED targets CCR5, highlighting the divergent molecular interactions evolved by HIV-1 and LukED to interact with CCR5. IMPORTANCE: The bicomponent pore-forming toxins are thought to play a vital role in the success of Staphylococcus aureus as a mammalian pathogen. One of the leukocidins, LukED, is necessary and sufficient for lethality in mice. At the molecular level, LukED causes cell lysis through binding to specific cellular receptors. CCR5 is one of the receptors targeted by LukED and is the major coreceptor for CCR5-tropic HIV-1. While the molecular interaction of CCR5 and HIV-1 is well characterized, the means by which LukED interacts with CCR5 is less clear. In this study, we demonstrated that receptor specificity is conferred through unique interactions between key domains on CCR5 and LukE. Although HIV-1 and LukED target the same receptor, our data demonstrated that they interact with CCR5 differently, highlighting the molecular complexity of host-pathogen interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Exotoxinas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Interações Hospedeiro-Patógeno , Receptores CCR5/química , Receptores CCR5/metabolismo , Staphylococcus aureus/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Exotoxinas/genética , Exotoxinas/farmacologia , Células HEK293 , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/fisiologia , Humanos , Leucocidinas/metabolismo , Leucocidinas/farmacologia , Mutação Puntual , Receptores CCR5/genética , Staphylococcus aureus/fisiologia , Internalização do Vírus
7.
Retrovirology ; 13(1): 83, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905985

RESUMO

BACKGROUND: Monocytes, the primary myeloid cell-type in peripheral blood, are resistant to HIV-1 infection as a result of the lentiviral restriction factor SAMHD1. Toll-like receptors recognize microbial pathogen components, inducing the expression of antiviral host proteins and proinflammatory cytokines. TLR agonists that mimic microbial ligands have been found to have activity against HIV-1 in macrophages. The induction of restriction factors in monocytes by TLR agonist activation has not been well studied. To analyze restriction factor induction by TLR activation in monocytes, we used the imidazoquinoline TLR7/8 agonist R848 and infected with HIV-1 reporter virus that contained packaged viral accessory protein Vpx, which allows the virus to escape SAMHD1-mediated restriction.  RESULTS: R848 prevented the replication of Vpx-containing HIV-1 and HIV-2 in peripheral blood mononuclear cells and monocytes. The block was post-entry but prior to reverse transcription of the viral genomic RNA. The restriction was associated with destabilization of the genomic RNA molecules of the in-coming virus particle. R848 treatment of activated T cells did not protect them from infection but treated monocytes produced high levels of proinflammatory cytokines, including type-I IFN that protected bystander activated T cells from infection. CONCLUSION: The activation of TLR7/8 induces two independent restrictions to HIV-1 replication in monocytes: a cell-intrinsic block that acts post-entry to prevent reverse transcription; and a cell-extrinsic block, in which monocytes produce high levels of proinflammatory cytokines (primarily type-I IFN) that protects bystander monocytes and T lymphocytes. The cell-intrinsic block may result from the induction of a novel restriction factor, which can be termed Lv5 and acts by destabilizing the in-coming viral genomic RNA, either by the induction of a host ribonuclease or by disrupting the viral capsid. TLR agonists are being developed for therapeutic use to diminish the size of the latent provirus reservoir in HIV-1 infected individuals. Such drugs may both induce latent provirus expression and restrict virus replication during treatment.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Imidazóis/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/virologia , Linhagem Celular , Células HEK293 , HIV-1/fisiologia , Humanos , Interferon Tipo I/biossíntese , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Ativação Linfocitária/efeitos dos fármacos , Monócitos/imunologia , Proteínas Monoméricas de Ligação ao GTP/genética , RNA Viral , Transcrição Reversa , Proteína 1 com Domínio SAM e Domínio HD , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Replicação Viral/efeitos dos fármacos
9.
Sci Rep ; 5: 11761, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26119462

RESUMO

Type-I interferons (IFNs) induce the expression of hundreds of cellular genes, some of which have direct antiviral activities. Although IFNs restrict different steps of HIV replication cycle, their dominant antiviral effect remains unclear. We first quantified the inhibition of HIV replication by IFN in tissue culture, using viruses with different tropism and growth kinetics. By combining experimental and mathematical analyses, we determined quantitative estimates for key parameters of HIV replication and inhibition, and demonstrate that IFN mainly inhibits de novo infection (33% and 47% for a X4- and a R5-strain, respectively), rather than virus production (15% and 6% for the X4 and R5 strains, respectively). This finding is in agreement with patient-derived data analyses.


Assuntos
Antivirais/farmacologia , HIV-1/fisiologia , Replicação Viral/efeitos dos fármacos , Técnicas de Cultura de Células , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Interferon Tipo I/farmacologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...