Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(22): 13840-61, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25861990

RESUMO

The human MPV17-related mitochondrial DNA depletion syndrome is an inherited autosomal recessive disease caused by mutations in the inner mitochondrial membrane protein MPV17. Although more than 30 MPV17 gene mutations were shown to be associated with mitochondrial DNA depletion syndrome, the function of MPV17 is still unknown. Mice deficient in Mpv17 show signs of premature aging. In the present study, we used electrophysiological measurements with recombinant MPV17 to reveal that this protein forms a non-selective channel with a pore diameter of 1.8 nm and located the channel's selectivity filter. The channel was weakly cation-selective and showed several subconductance states. Voltage-dependent gating of the channel was regulated by redox conditions and pH and was affected also in mutants mimicking a phosphorylated state. Likewise, the mitochondrial membrane potential (Δψm) and the cellular production of reactive oxygen species were higher in embryonic fibroblasts from Mpv17(-/-) mice. However, despite the elevated Δψm, the Mpv17-deficient mitochondria showed signs of accelerated fission. Together, these observations uncover the role of MPV17 as a Δψm-modulating channel that apparently contributes to mitochondrial homeostasis under different conditions.


Assuntos
DNA Mitocondrial/genética , Potencial da Membrana Mitocondrial , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Animais , Autofagia , Dicroísmo Circular , Dano ao DNA , Fibroblastos/metabolismo , Fluoresceínas/química , Genótipo , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Oxirredução , Fosforilação , Filogenia , Pichia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Dev Biol ; 391(1): 66-80, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726525

RESUMO

To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2(-/-) mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2(-/-)mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal ß-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2(-/-) mice. The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders.


Assuntos
Metabolismo dos Lipídeos , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Peroxissomos/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácidos e Sais Biliares/química , Células Epiteliais/citologia , Ácidos Graxos/química , Feminino , Homeostase , Lactação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Poliaminas/química , Frações Subcelulares , Fatores de Tempo
3.
PLoS One ; 7(4): e34530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22506025

RESUMO

BACKGROUND: Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. METHODS/PRINCIPAL FINDINGS: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T. brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70-80 pA, 20-25 pA, and 8-11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20-25 pA is anion-selective (P(K+)/P(Cl-)∼0.31), while the other two types of channels are slightly selective for cations (P(K+)/P(Cl-) ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. CONCLUSIONS/SIGNIFICANCE: These results indicate that the membrane of glycosomes apparently contains several types of pore-forming channels connecting the glycosomal lumen and the cytosol.


Assuntos
Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Microcorpos/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Transporte Biológico , Citosol/metabolismo , Glicólise , Bicamadas Lipídicas/metabolismo , Organelas/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...