Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1158905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313411

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins. By using statistical and machine learning models, we observed that the T cell response highly correlated with a compound titer of antibodies against the Receptor Binding Domain (RBD), S and N. However, while serum antibodies decayed over time, the cellular phenotype of these individuals remained stable over four months. Our computational analysis demonstrates that in young adults, asymptomatic and paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting CD4 T cell responses that exhibit slower decays than antibody titers. These observations imply that next-generation COVID-19 vaccines should be designed to induce stronger cellular responses to sustain the generation of potent neutralizing antibodies.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Aprendizado de Máquina
2.
Science ; 372(6548): 1336-1341, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006597

RESUMO

The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here, we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that the receptor-binding domain (RBD) is highly immunogenic and that 33% of RBD-reactive clones and 94% of individuals recognized a conserved immunodominant S346-S365 region comprising nested human leukocyte antigen DR (HLA-DR)- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identified cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Epitopos Imunodominantes , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Coronavirus/imunologia , Reações Cruzadas , Epitopos de Linfócito T/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Antígenos HLA-DP/imunologia , Antígenos HLA-DR/imunologia , Humanos , Memória Imunológica , Proteínas do Nucleocapsídeo/imunologia , Domínios Proteicos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Glicoproteína da Espícula de Coronavírus/química , Células T Auxiliares Foliculares/imunologia , Subpopulações de Linfócitos T/imunologia
3.
Cancers (Basel) ; 11(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569511

RESUMO

Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors' ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion. Therefore, understanding the mechanisms by which cancer cell invasion is controlled may provide new strategies to impair cancer progression. We investigated the role of the ADP-ribosylation factor (Arf)-like (Arl) protein Arl13b in breast cancer cell migration and invasion in vitro, using breast cancer cell lines and in vivo, using mouse orthotopic models. We show that Arl13b silencing inhibits breast cancer cell migration and invasion in vitro, as well as cancer progression in vivo. We also observed that Arl13b is upregulated in breast cancer cell lines and patient tissue samples. Moreover, we found that Arl13b localizes to focal adhesions (FAs) and interacts with ß3-integrin. Upon Arl13b silencing, ß3-integrin cell surface levels and FA size are increased and integrin-mediated signaling is inhibited. Therefore, we uncover a role for Arl13b in breast cancer cell migration and invasion and provide a new mechanism for how ARL13B can function as an oncogene, through the modulation of integrin-mediated signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...