Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Respir J ; 18(5): e13759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714529

RESUMO

INTRODUCTION: Chest radiograph and computed tomography (CT) scans can accidentally reveal pulmonary nodules. Malignant and benign pulmonary nodules can be difficult to distinguish without specific imaging features, such as calcification, necrosis, and contrast enhancement. However, these lesions may exhibit different image texture characteristics which cannot be assessed visually. Thus, a computer-assisted quantitative method like histogram analysis (HA) of Hounsfield unit (HU) values can improve diagnostic accuracy, reducing the need for invasive biopsy. METHODS: In this exploratory control study, nonenhanced chest CT images of 20 patients with benign (10) and cancerous (10) lesion were selected retrospectively. The appearances of benign and malignant lesions were very similar in chest CT images, and only pathology report was used to discriminate them. Free hand region of interest (ROI) was inserted inside the lesion for all slices of each lesion. Mean, minimum, maximum, and standard deviations of HU values were recorded and used to make HA. RESULTS: HA showed that the most malignant lesions have a mean HU value between 30 and 50, a maximum HU less than 150, and a minimum HU between -30 and 20. Lesions outside these ranges were mostly benign. CONCLUSION: Quantitative CT analysis may differentiate malignant from benign lesions without specific malignancy patterns on unenhanced chest CT image.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Masculino , Feminino , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Diagnóstico Diferencial , Adulto , Radiografia Torácica/métodos , Pulmão/diagnóstico por imagem , Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...