Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(2): 624-636, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35977794

RESUMO

With the desire to develop a sustainable green method to store and release solar energy via a chemical reaction, we have examined the well-investigated norbornadiene-quadricyclane (NBD-QC) system in water. In this context, we have employed octa acid (OA) as the host that forms a capsule in water. According to 1 H NMR spectra and diffusion constants, OA forms a stable 2:2 complex with both NBD and QC and 1:1:2 mixed complex in the presence of equal amounts of both NBD and QC. The photoconversion of NBD to QC within the OA capsule is clean without side reactions. In this case, OA itself acts as a triplet sensitizer. Recognizing the disadvantage of this supramolecular approach, in the future we plan to look for visible light absorbing sensitizers to perform this conversion. The reverse reaction (QC to NBD) is achieved via electron transfer process with methylene blue as the sensitizer. This reverse reaction is also clean, and no side products were detected. The preliminary results reported here provide "proof of principle" for combining green, sustainable and supramolecular chemistries in the context of solar energy capture and release.

2.
ACS Org Inorg Au ; 2(2): 175-185, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36855459

RESUMO

The intermolecular (monomer-dimer equilibrium) and intramolecular (C-NO and C-NMe2 rotations) dynamics of 4-nitrosocumene (1a) and 4-(N,N-dimethylamino)nitrosobenzene (1b), respectively, were found to be controlled by the medium (water) and the host environment (organic capsules and cavitands). The ability of water to shift the equilibrium toward the dimer appears to result from dipolar stabilization of the polar dimer structure and has a resemblance to water's known ability to favor organic cycloaddition reactions. In an aqueous medium, a range of organic hosts selectively include only the nitrosocumene monomer 1a. Encapsulation in the octa acid duplex (OA2) selects two 1a monomers rather than a dimer structure. Octa acid encapsulation also results in more restricted intramolecular C-N rotations of the guest 1b.

3.
Photochem Photobiol Sci ; 19(7): 976-986, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32582889

RESUMO

Excited state chemistry and physics of molecules, in addition to their inherent electronic and steric features, depend on their immediate microenvironments. This study explores the influence of an organic capsule, slightly larger than the reactant molecule itself, on the excited state chemistry of the encapsulated molecule. Results presented here show that the confined molecule, in fact, is not isolated and can be manipulated from outside even without direct physical interaction. Examples where communication between a confined molecule and a free molecule present outside is brought about through electronic and energy transfer processes are presented. Geometric isomerization of octa acid encapsulated stilbenes induced by energy and electron transfer by cationic sensitizers that attach themselves to the anionic capsule is examined. The fact that isomerization occurs when the sensitizer present outside is excited illustrates that the reactant and sensitizer are communicating across the molecular wall of the capsule. Ability to remotely activate a confined molecule opens up new opportunities to bring about reactions of confined radical ions and triplet excited molecules generated via long distance energy and electron transfer processes.

4.
J Org Chem ; 84(13): 8759-8765, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31187624

RESUMO

Supramolecular modulation of reduction potentials of two series of bis(pyridinium)alkane salts is described. Study of the encapsulation of bis(pyridinium)alkane guests within the CB[7] cavity revealed the critical influence of the linker length and the position of the heteroatom on the reduction potentials of encapsulated guests. CB[7] complexation of pyridinium salts induced reduction potential changes ranging between +50 and -430 mV. Noncovalent modulation of the electron-accepting ability of organic cations can be utilized in electron-transfer-initiated reactions.

5.
ACS Omega ; 3(5): 5083-5091, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458723

RESUMO

Employing six cationic water-soluble organic dye molecules as probes, we have attempted to qualitatively understand the factors that govern the attraction between such molecules and the anionic water-soluble host, octa acid (OA). Examination of the competitive host-guest complexation between cucurbit[8]uril (CB[8]) and OA using absorption and emission spectroscopy revealed that the dye molecules included within CB[8] could be "pulled out" by OA. However, an order of magnitude higher concentration of OA was required to shift the equilibrium toward OA, suggesting that attraction between the anionic host OA and the cationic dye molecules such as cresyl violet perchlorate and methylene blue is weaker than the hydrophobic and cation-dipolar interaction between these dye molecules and CB[8]. The importance of Coulombic attraction between OA and dye molecules is also revealed by monomer-to-dimer conversion upon addition of OA to an aqueous solution of monomeric dye molecules. Under conditions where the dye-to-OA ratio is high, freely dissolved monomeric dye molecules are attracted to the exterior of OA and aggregate as dimers on the exterior wall of OA. On the other hand, at high ratios of OA to dye molecules, the dye molecules adsorb as monomers on the exterior of OA. Thus, the monomer-to-dimer ratio in aqueous solution can be controlled by adjusting the ratio of dye to OA molecules. The results presented are of value in qualitatively understanding the relative binding properties of ionic guests with ionic hosts. Studies are qualitative in nature, and further detailed quantitative studies planned for the future are likely to provide deeper understanding of the interaction between water-soluble dye molecules, OA, and CB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...