Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088364

RESUMO

Curcumin, a biphenolic substance derived from turmeric (Curcuma longa), offers a number of health-beneficial effects, including anti-inflammatory, cardiovascular protection, anti-cancerous, and anti-angiogenic. By interacting with the PPARγ (Peroxisome Proliferator-Activated Receptor-γ), curcumin inhibits NF-κB. These biological outcomes seem to be the outcome of NF-κB inhibition mediated by curcumin. The current study explores the in vivo impact of curcumin on several inflammatory parameters during aging in Wistar rats. An in-silico docking simulation study using Maestro and Desmond, Schrödinger, was carried out to further validate the experimental findings. According to our observation, rats given curcumin supplementation had a considerably (p ≤ 0.05) reduced level of inflammation. By generating numerous polar and hydrophobic interactions and exhibiting little conformational deviation throughout the simulation, in silico investigations showed that the proposed ligand curcumin had a high affinity for the enzyme COX-2. During simulation, protein-ligand complexes of curcumin with the other targets viz. 5-LOX, TNF-α and IL-6 also demonstrated improved binding and minimal fluctuation. The COX-2 and 5-LOX enzymes and the cytokines (TNF-α and IL-6) implicated in inflammation may have been inhibited by curcumin, highlighting its function as a multi-target inhibitor. Our study provides convincing support for the idea that eating a diet high in curcumin may help to reduce inflammation and help to explain some of its health-beneficial effects.Communicated by Ramaswamy H. Sarma.

2.
ACS Omega ; 8(41): 38025-38037, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867720

RESUMO

Treatment of triple-negative breast cancer (TNBC) is very challenging as only few therapeutic options are available, including chemotherapy. Thus, a constant search for new and effective approaches of therapy that could potentially fight against TNBC and mitigate side effects is "turn-on". Recently, multitarget therapy has come up with huge possibilities, and it may possibly be useful to overcome several concurrent challenges in cancer therapy. Herein, we proposed the inhibition of both Topoisomerase II enzyme and p53-MDM2 (p53 cavity in MDM2) protein complex by the same bioactive molecules for multitarget therapy. RNA-seq analysis was performed to get a network of essential proteins involved in the apoptosis pathway by considering the triple-negative breast cancer cell line (MDA-MB-231). All of the untreated duplicate sample data were retrieved from NCBI (GSC149768). Further, via in silico screening, potent bioactive molecules were screened out to target both Topo II and the p53-MDM2 complex. The results of ligand-based screening involving docking, MMGBSA, ADME/T, MD simulation, and PCA suggested that resveratrol, a plant bioactive molecule, showed more potential binding in the same cavity of target proteins compared with doxorubicin for Topo IIα (5GWK) and etoposide for the second protein target (p53-MDM2 complex; 4OQ3) as the control drug. This is also evident from the in vitro validation in case of triple-negative breast cancer cell lines (MDA-MB-231) and Western blotting analysis. Thus, it paves the scope of multitargeting against triple-negative breast cancer.

3.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811765

RESUMO

Radiation resistance is one of the major problems in the treatment of small cell lung cancer (SCLC). Most of these patients are given radiation as first-line treatment and it was observed that the initial response in these patients is very good. However, they show relapse in a few months which is also associated with resistance to treatment. Thus, targeting the mechanism by which these cells develop resistance could be an important strategy to improve the survival chances of these patients. From the RNA-Seq data analysis, it was identified that CHEK1 gene was overexpressed. Chk1 protein which is encoded by the CHEK1 gene is an important protein that is involved in radiation resistance in SCLC. It is known to favour the cells to deal with replicative stress. CHEK1 is the major cause for developing radiation resistance in SCLC. Thus, natural compounds that could also serve as potential inhibitors for Chk1 were explored. Accordingly; the compounds were screened based on ADME, docking and MM-GBSA scores. MD simulations were performed for the selected protein-ligand complexes and the results were compared to the co-crystallised ligand, 3-(indol-2-yl)indazole. The results showed that compound INC000033832986 could be a natural alternative to the commercial ligand for the prevention of SCLC.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723894

RESUMO

Determining the structure-odor relationship has always been a very challenging task. The main challenge in investigating the correlation between the molecular structure and its associated odor is the ambiguous and obscure nature of verbally defined odor descriptors, particularly when the odorant molecules are from different sources. With the recent developments in machine learning (ML) technology, ML and data analytic techniques are significantly being used for quantitative structure-activity relationship (QSAR) in the chemistry domain toward knowledge discovery where the traditional Edisonian methods have not been useful. The smell perception of odorant molecules is one of the aforementioned tasks, as olfaction is one of the least understood senses as compared to other senses. In this study, the XGBoost odor prediction model was generated to classify smells of odorant molecules from their SMILES strings. We first collected the dataset of 1278 odorant molecules with seven basic odor descriptors, and then 1875 physicochemical properties of odorant molecules were calculated. To obtain relevant physicochemical features, a feature reduction algorithm called PCA was also employed. The ML model developed in this study was able to predict all seven basic smells with high precision (>99%) and high sensitivity (>99%) when tested on an independent test dataset. The results of the proposed study were also compared with three recently conducted studies. The results indicate that the XGBoost-PCA model performed better than the other models for predicting common odor descriptors. The methodology and ML model developed in this study may be helpful in understanding the structure-odor relationship.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-21, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526306

RESUMO

Oral Squamous Cell Carcinoma (OSCC) accounts for more than 90% of all kinds of oral neoplasms that develop in the oral cavity. It is a type of malignancy that shows high morbidity and recurrence rate, but data on the disease's target genes and biomarkers is still insufficient. In this study, in silico studies have been performed to find out the novel target genes and their potential therapeutic inhibitors for the effective and efficient treatment of OSCC. The DESeq2 package of RStudio was used in the current investigation to screen and identify differentially expressed genes for OSCC. As a result of gene expression analysis, the top 10 novel genes were identified using the Cytohubba plugin of Cytoscape, and among them, the ubiquitin-conjugating enzyme (UBE2D1) was found to be upregulated and playing a significant role in the progression of human oral cancers. Following this, naturally occurring compounds were virtually evaluated and simulated against the discovered novel target as prospective drugs utilizing the Maestro, Schrodinger, and Gromacs software. In a simulated screening of naturally occurring potential inhibitors against the novel target UBE2D1, Epigallocatechin 3-gallate, Quercetin, Luteoline, Curcumin, and Baicalein were identified as potent inhibitors. Novel identified gene UBE2D1 has a significant role in the proliferation of human cancers through suppression of 'guardian of genome' p53 via ubiquitination dependent pathway. Therefore, the treatment of OSCC may benefit significantly from targeting this gene and its discovered naturally occurring inhibitors.Communicated by Ramaswamy H. Sarma.

6.
Sci Rep ; 13(1): 13612, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604838

RESUMO

In this study, we investigated whether zerumbone (ZBN), ellagic acid (ELA) and quercetin (QCT), the plant-derived components, can modulate the role of COX-3 or cytokines liable in arthritic disorder. Initially, the effect of ZBN, ELA, and QCT on inflammatory process was investigated using in-vitro models. In-silico docking and molecular dynamics study of these molecules with respective targets also corroborate with in-vitro studies. Further, the in-vivo anti-arthritic potential of these molecules in Complete Freund's adjuvant (CFA)-induced arthritic rats was confirmed. CFA increases in TNF-α and IL-1ß levels in the arthritic control animals were significantly (***p < 0.001) attenuated in the ZBN- and ELA-treated animals. CFA-induced attenuation in IL-10 levels recovered under treatment. Moreover, ELA attenuated CFA-induced upregulation of COX-3 and ZBN downregulated CFA-triggered NFκB expression in arthritic animals. The bonding patterns of zerumbone in the catalytic sites of targets provide a useful hint in designing and developing suitable derivatives that can be used as a potential drug. To our best knowledge, the first time we are reporting the role of COX-3 in the treatment of arthritic disorders which could provide a novel therapeutic approach for the treatment of inflammatory disorders.


Assuntos
Artrite , NF-kappa B , Animais , Ratos , Artrite/tratamento farmacológico , Citocinas , Ácido Elágico , Adjuvante de Freund , Compostos Fitoquímicos/farmacologia
7.
Mol Diagn Ther ; 27(3): 321-347, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36729362

RESUMO

Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.


Assuntos
Líquidos Corporais , Compostos Orgânicos Voláteis , Feminino , Humanos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Líquidos Corporais/metabolismo , Saliva/metabolismo , Testes Respiratórios/métodos , Pele
8.
J Biomol Struct Dyn ; 41(1): 16-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791969

RESUMO

Cancer care has become a challenge with the current COVID-19 pandemic scenario. Specially, cancers like small cell lung cancers (SCLC) are difficult to treat even in the normal situation due to their rapid growth and early metastasis. For such patients, treatment can't be compromised and care must be taken to ensure their minimum exposure to the ongoing spread of COVID-19 infection. For this reason, in-house treatments are being suggested for these patients. Another issue is that symptoms of SCLC match well with that of COVID-19 infection. Hence, the detection of COVID-19 may also get delayed leading to unnecessary complications. Thus, we have tried to investigate if the therapeutics that is currently used in lung cancer treatment can also act against SARS-CoV-2. If it is so, the same treatment protocols can be continued even if the SCLC patient had contracted COVID-19 without compromising the cancer care. For this, RNA dependent RNA polymerase (RdRP) from SARS-CoV-2 has been selected as drug target. Both docking and molecular dynamicssimulation analysis have indicated that Paclitaxel and Dacomitinib may be explored as multi-target drugs for both SCLC and COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Simulação de Dinâmica Molecular , Reposicionamento de Medicamentos , Pandemias , SARS-CoV-2 , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Antivirais
9.
J Biomol Struct Dyn ; 41(5): 2046-2073, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34986744

RESUMO

An increasing global health challenge is antimicrobial resistance. Bacterial infections are often treated by using ß-lactam antibiotics. But several resistance mechanisms have evolved in clinically mutated bacteria, which results in resistance against such antibiotics. Among which production of novel ß-lactamase is the major one. This results in bacterial resistance against penicillin, cephalosporin, and carbapenems, which are considered to be the last resort of antibacterial treatment. Hence, ß-lactamase enzymes produced by such bacteria are called extended-spectrum ß-lactamase and carbapenemase enzymes. Further, these bacteria have developed resistance against many ß-lactamase inhibitors as well. So, investigation of important residues that play an important role in altering and expanding the spectrum activity of these ß-lactamase enzymes becomes necessary. This review aims to gather knowledge about the role of residues and their mutations in class A ß-lactamase, which could be responsible for ß-lactamase mediated resistance. Class A ß-lactamase enzymes contain most of the clinically significant and expanded spectrum of ß-lactamase enzymes. Ser70, Lys73, Ser130, Glu166, and Asn170 residues are mostly conserved and have a role in the enzyme's catalytic activity. In-depth investigation of 69, 130, 131, 132, 164, 165, 166, 170, 171, 173, 176, 178, 179, 182, 237, 244, 275 and 276 residues were done along with its kinetic analysis for knowing its significance. Further, detailed information from many previous studies was gathered to know the effect of mutations on the kinetic activity of class A ß-lactamase enzymes with ß-lactam antibiotics.Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , beta-Lactamases , Cinética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Inibidores de beta-Lactamases , Bactérias/metabolismo , Penicilinas
10.
J Biomol Struct Dyn ; 41(10): 4295-4312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475497

RESUMO

PER1 and PER2 are among the class A ß-lactamase enzymes, which have evolved clinically to form antibiotic resistance and have significantly expanded their spectrum of activity. Hence, there is a need to study the clinical mutation responsible for such ß-lactamase mediated antibiotic resistance. Alterations in catalytic centre and Ω-loop structure could be the cause of antibiotic resistance in these ß-lactamase enzymes. Structural and functional alterations are caused due to mutations on or near the catalytic centre, which results in active site plasticity and are responsible for its expanded spectrum of activity in these class A ß-lactamase enzymes. Multiple sequence alignment, structure, kinetic, molecular docking, MMGBSA and molecular dynamic simulation comparisons were done on 38 clinically mutated and wild class A ß-lactamase enzymes. This work shows that PER1 and PER2 enzymes contains most unique mutations and have altered Ω-loop structure, which could be responsible for altering the structure-activity relationship and extending the spectrum of activity of these enzymes. Alterations in molecular docking, MMGBSA, kinetic values reveals the modification in the binding and activity of these clinically mutated enzymes with antibiotics. Further, the cause of these alterations can be revealed by active site interactions and H-bonding pattern of these enzymes with antibiotics. Met69Gln, Glu104Thr, Tyr105Trp, Met129His, Pro167Ala, Glu168Gln, Asn170His, Ile173Asp and Asp176Gln mutations were uniquely found in PER1 and PER2 enzymes. These mutations occurs at catalytic important residues and results in altered interactions with ß-lactam antibiotics. Hence, these mutations could be responsible for altering the structure-activity of PER1 and PER2 enzymes.Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , beta-Lactamases , beta-Lactamases/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/química , Mutação , Simulação de Dinâmica Molecular , Inibidores de beta-Lactamases
11.
Curr Med Chem ; 30(7): 783-808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35726414

RESUMO

ß-lactam antibiotics treat bacterial infections very effectively, but overuse and misuse have led to resistance. ß-lactamase enzymes hydrolyze ß-lactam antibiotics and are the primary cause of resistance in bacteria. Bacteria evolve and clinically mutate to produce such ß -lactamase enzymes, which could hydrolyze newly discovered antibiotics. Therefore, carbapenems are considered to be the last resort for antimicrobial treatment. Further, different inhibitors have been discovered to fight these evolving and mutating ß- lactamase enzyme resistance. These inhibitors are given in combination with the ß-lactam antibiotics to treat bacterial infections effectively. But in due course of time, it has been observed that bacteria develop resistance against this combination. This is an extensive review that discusses different classes of ß-lactamase enzymes, their mechanism of action, and the role of critical structural elements like loops and catalytically relevant mutations. Such mutations and structural modifications result in expanding the spectrum of activity, making these ß-lactamase enzymes resistant to the newly discovered ß-lactam antibiotics and their inhibitors. Detailed knowledge of such mutations, catalytically relevant structural modifications, related kinetics, and action mechanisms could help develop new inhibitors effectively. Further, a detailed discussion of available inhibitors against each class of ß-lactamase enzymes is also present.


Assuntos
Infecções Bacterianas , beta-Lactamases , Humanos , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Inibidores de beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química , Monobactamas/farmacologia , Bactérias
12.
Int J Biol Macromol ; 226: 473-484, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495993

RESUMO

Multi-target therapies have been considered one of the viable options to overcome the challenges to eradicate intrinsic and acquired drug-resistant cancer cells. While to increase the efficacy of therapeutics, the use of a single drug against multiple structurally similar sites, which noncommittedly modulate several vital cellular pathways proposed as a potential alternative to a 'single drug single target'. Besides, it reduces the usage of a number of drugs and their side effects. Topoisomerase II enzyme plays a very significant role in DNA replication and thus served as an important target for numerous anti-cancer agents. However, in spite of promising clinical results, in several cases, it was found that cancer cells have developed resistance against the anti-cancer agents targeting this enzyme. Therefore, multi-target therapies have been proposed as an alternative to overcome different drug resistance mechanisms while topoisomerases II are a primary target site. In this review, we have tried to discuss the characteristics of the binding cavity available for interactions of drugs, and potent inhibitors concurrently modulate the functions of topoisomerases II as well as other structurally related target sites. Additionally, the mechanism of drug resistance by considering molecular and cellular insights by including various types of cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/química , Neoplasias/tratamento farmacológico , DNA Topoisomerases Tipo I/metabolismo , Resistência a Medicamentos , Inibidores Enzimáticos/farmacologia , Inibidores da Topoisomerase I/farmacologia
13.
J Biomol Struct Dyn ; 41(18): 8941-8960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310099

RESUMO

The Olfactory receptor (OR)-odorant interactions are perplexed. ORs can bind to structurally diverse odorants associated with one or more odor percepts. Various attempts have been made to understand the intricacies of OR-odorant interaction. In this study, experimentally documented OR-odorant interactions are investigated comprehensively to; (a) suggest potential odor percepts for ORs based on the OR-OR network; (b) determine how odorants interacting with specific ORs differ in terms of inherent pharmacophoric features and molecular properties, (c) identify molecular interactions that explained OR-odorant interactions of selective ORs; and (d) predict the probable role of ORs other than olfaction. Human olfactory receptor network (hORnet) is developed to study possible odor percepts for ORs. We identified six molecular properties which showed variation and significant patterns to differentiate odorants binding with five ORs. The pharmacophore analysis revealed that odorants subset of five ORs follow similar pharmacophore hypothesis, (one hydrogen acceptor and two hydrophobic regions) but differ in terms of distance and orientation of pharmacophoric features. To ascertain the binding site residues and key interactions between the selected ORs and their interacting odorants, 3D-structure modelling, docking and molecular dynamics studies were carried out. Lastly, the potential role of ORs beyond olfaction is explored. A human OR-OR network was developed to suggest possible odor percepts for ORs using empirically proven OR-odorant interactions. We sought to find out significant characteristics, molecular properties, and molecular interactions that could explain OR-odorant interactions and add to the understanding of the complex issue of odor perception.Communicated by Ramaswamy H. Sarma.

14.
Curr Pharm Des ; 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36537601

RESUMO

The article has been withdrawn at the request of the author.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

15.
RSC Adv ; 12(35): 22826-22842, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36105999

RESUMO

SME-1 is a carbapenemase, produced by Serratia marcescens organism and causes nosocomial infections such as in bloodstream, wounds, urinary tract, or respiratory tract infections. Treatment of such infections becomes very complex due its resistance towards penicillins, cephalosporins, monobactams, and carbapenems. Resistance to such antibiotics is of great medical concern. The misuse and overuse of these antibiotics result in the clinical mutation and production of novel ß-lactamase enzymes such as SME-1, which show resistance to carbapenems. Class A contains most of the clinically significant extended spectrum of ß-lactamase enzymes and carbapenemases. In this study, class A ß-lactamase SME-1 sequence, structure, and binding were compared with naturally mutated class A ß-lactamase enzymes and a wild-type TEM-1. This study was performed for revealing mutations, which could be responsible for the carbapenemase activity of SME-1. The dynamic characteristics of SME-1 enzymes manifest a different degree of conservation and variability, which confers them to possess carbapenemase activities. Met69Cys, Glu104Tyr, Tyr105His, Ala237Ser, and Gly238Cys mutations occur in SME-1 as compared to wild-type TEM-1. These mutated residues are present close to active site residues such as Ser70, Lys73, Ser130, Asn132, Glu166, and Asn170, which participate in the hydrolytic reaction of ß-lactam antibiotics. Furthermore, these mutated residues demonstrate altered interactions with the ß-lactam antibiotics (results in altered binding) and within themselves (results in active site structure alterations), which results in expanding the spectrum of activity of these enzymes. This study provides important insights into the structure and activity relationship of SME-1 enzymes. This is evident from the Ω-loop structure modification, which forms the wall of the active site and repositioning of residues involved in hydrolytic reactions, when present in the complex with meropenem in a stable state of MD simulation at 50 ns. Hence, Met69Cys, Glu104Tyr, Tyr105His, Ala237Ser, and Gly238Cys mutations could result in an altered active site structure, binding, and activity of SME-1 with meropenem and thus become resistantant against meropenem, which is a carbapenem.

16.
Commun Biol ; 5(1): 416, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508713

RESUMO

The presence of ERG gene fusion; from developing prostatic intraepithelial neoplasia (PIN) lesions to hormone resistant high grade prostate cancer (PCa) dictates disease progression, altered androgen metabolism, proliferation and metastasis1-3. ERG driven transcriptional landscape may provide pro-tumorigenic cues in overcoming various strains like hypoxia, nutrient deprivation, inflammation and oxidative stress. However, insights on the androgen independent regulation and function of ERG during stress are limited. Here, we identify PGC1α as a coactivator of ERG fusion under various metabolic stress. Deacetylase SIRT1 is necessary for PGC1α-ERG interaction and function. We reveal that ERG drives the expression of antioxidant genes; SOD1 and TXN, benefitting PCa growth. We observe increased expression of these antioxidant genes in patients with high ERG expression correlates with poor survival. Inhibition of PGC1α-ERG axis driven transcriptional program results in apoptosis and reduction in PCa xenografts. Here we report a function of ERG under metabolic stress which warrants further studies as a therapeutic target for ERG fusion positive PCa.


Assuntos
Antioxidantes , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Neoplasias da Próstata , Androgênios , Antioxidantes/farmacologia , Fusão Gênica , Humanos , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias da Próstata/patologia , Estresse Fisiológico , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
17.
Biomed Mater ; 17(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35105823

RESUMO

Nearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry. Biofilm impart enhanced antibiotic resistance and become recalcitrant to host immune responses leading to persistent and recurrent infections. It makes the clinical treatment for biofilm infections very difficult. Reduced penetration of antibiotic molecules through EPS, mutation of the target site, accumulation of antibiotic degrading enzymes, enhanced expression of efflux pump genes are the probable causes for antibiotics resistance. Accordingly, strategies like administration of topical antibiotics and combined therapy of antibiotics with antimicrobial peptides are considered for alternate options to overcome the antibiotics resistance. A number of other remediation strategies for both biofilm inhibition and dispersion of established biofilm have been developed. The metallic nanoparticles (NPs) and their oxides have recently gained a tremendous thrust as antibiofilm therapy for their unique features. This present comprehensive review gives the understanding of antibiotic resistance mechanisms of biofilm and provides an overview of various currently available biofilm remediation strategies, focusing primarily on the applications of metallic NPs and their oxides.


Assuntos
Infecções Bacterianas , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Resistência Microbiana a Medicamentos , Humanos
18.
Nucleic Acids Res ; 50(D1): D678-D686, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34469532

RESUMO

Olfaction is a multi-stage process that initiates with the odorants entering the nose and terminates with the brain recognizing the odor associated with the odorant. In a very intricate way, the process incorporates various components functioning together and in synchronization. OlfactionBase is a free, open-access web server that aims to bring together knowledge about many aspects of the olfaction mechanism in one place. OlfactionBase contains detailed information of components like odors, odorants, and odorless compounds with physicochemical and ADMET properties, olfactory receptors (ORs), odorant- and pheromone binding proteins, OR-odorant interactions in Human and Mus musculus. The dynamic, user-friendly interface of the resource facilitates exploration of different entities: finding chemical compounds having desired odor, finding odorants associated with OR, associating chemical features with odor and OR, finding sequence information of ORs and related proteins. Finally, the data in OlfactionBase on odors, odorants, olfactory receptors, human and mouse OR-odorant pairs, and other associated proteins could aid in the inference and improved understanding of odor perception, which might provide new insights into the mechanism underlying olfaction. The OlfactionBase is available at https://bioserver.iiita.ac.in/olfactionbase/.


Assuntos
Bases de Dados Factuais , Odorantes , Neurônios Receptores Olfatórios/química , Receptores Odorantes/genética , Animais , Humanos , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/química , Transdução de Sinais/genética , Olfato/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-34849327

RESUMO

Spike glycoprotein of SARS-CoV-2 is mainly responsible for the recognition and membrane fusion within the host and this protein has an ability to mutate. Hence, T cell and B cell epitopes were derived from the spike glycoprotein sequence of wild SARS-CoV-2. The proposed T cell and B cell epitopes were found to be antigenic and conserved in the sequence of SARS-CoV-2 mutant (B.1.1.7). Thus, the proposed epitopes are effective against SARS-CoV-2 and its B.1.1.7 mutant. MHC-I that best interacts with the proposed T cell epitopes were found, using immune epitope database. Molecular docking and molecular dynamic simulations were done for ensuring a good binding between the proposed MHC-I and T cell epitopes. The finally proposed T cell epitope was found to be antigenic, non-allergenic, non-toxic and stable. Further, the finally proposed B cell epitopes were also found to be antigenic. The population conservation analysis has ensured the presence of MHC-I molecule (respective to the finally proposed T cell) in human population of most affected countries with SARS-CoV-2. Thus the proposed T and B cell epitope could be effective in designing an epitope-based vaccine, which is effective on SARS-CoV-2 and its B.1.1.7mutant. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13721-021-00348-w.

20.
J Biomol Struct Dyn ; 40(5): 2264-2283, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33107812

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the current global pandemic that has caused a death toll of >1.12 million worldwide and number continues to climb in several countries. Currently, there are neither specific antiviral drugs nor vaccines for the treatment and prevention of COVID-19. We screened in silico, a group of natural spice and herbal secondary metabolites (SMs) for their inhibition efficacy against multiple target proteins of SARS-CoV-2 as well as the human angiotensin-converting enzyme 2 protein. Docking and simulation results indicated that epicatechin, embelin, hesperidin, cafestol, murrayanine and murrayaquinone-A have higher inhibition efficacy over at least one of the known antiviral drugs such as Hydroxychloroquine, Remdesivir and Ribavirin. Combination of these potentially effective SMs from their respective plant sources was analysed, and its absorption and acute oral toxicity were examined in Wistar rats and classified as category 5 as per the Globally Harmonized System. The identified SMs may be useful in the development of preventive nutraceuticals, food supplements and antiviral drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ratos , Ratos Wistar , Especiarias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...