Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Genetika ; 50(3): 273-81, 2014 Mar.
Artigo em Russo | MEDLINE | ID: mdl-25438547

RESUMO

The elevation of Hsp104 (heat shock protein) content under heat shock plays a key role in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress in the stationary growth phase. As shown, the loss of mitochondrial DNA (petite mutation) inhibited the induction of the Hsp104 synthesis under heat stress (39 degrees C) during the transition to the stationary growth phase. Also, the petite mutation suppressed the activity of antioxidant enzymes in the same phase, which led to lower thermotolerance. At the same time, the mutation inhibited production of the reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression level of yeast nuclear genes upon transitioning to the stationary growth phase.


Assuntos
DNA Mitocondrial/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Espécies Reativas de Oxigênio/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochemistry (Mosc) ; 79(1): 16-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24512659

RESUMO

The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.


Assuntos
Cicloeximida/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Cicloeximida/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Inibidores da Síntese de Proteínas/química , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
3.
Biochemistry (Mosc) ; 77(1): 78-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22339636

RESUMO

Amiodarone (AMD) is known to induce a transient increase in cytosolic Ca2+ level in cells of the yeast Saccharomyces cerevisiae. In the present study the effect of AMD on the thermotolerance and Hsp104p synthesis of the yeast was studied. AMD induced Hsp104p synthesis and increased survival of the yeast after a severe heat shock (50°C). The development of thermotolerance to a considerable extent depended on the presence of Hsp104p. The same effect was achieved by treatment with the classical uncoupler CCCP, which is also known to increase the cytosolic Ca2+ level. It is supposed that the change in intracellular Ca2+ concentration plays an important role in activation of the HSP104 gene expression and in increasing the thermotolerance of the yeast. The possible link between mitochondrial activity and calcium homeostasis is discussed.


Assuntos
Amiodarona/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Amiodarona/química , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Fosforilação , Rodaminas/química , Saccharomyces cerevisiae/metabolismo , Temperatura
5.
Genetika ; 40(4): 437-44, 2004 Apr.
Artigo em Russo | MEDLINE | ID: mdl-15174275

RESUMO

Heat shock protein Hsp104 of Saccharomyces cerevisiae functions as a protector of cells against heat stress. When yeast are grown in media containing nonfermentable carbon sources, the constitutive level of this protein increases, which suggests an association between the expression of Hsp104 and yeast energy metabolism. In this work, it is shown that distortions in the function of mitochondria appearing as a result of mutation petite or after exposure of cells to the mitochondrial inhibitor sodium azide reduce the induction of Hsp104 synthesis during heat shock. Since the addition of sodium azide suppressed the formation of induced thermotolerance in the parent type and in mutant hsp104, the expression of gene HSP104 and other stress genes during heat shock is apparently regulated by mitochondria.


Assuntos
Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese
6.
Mikrobiologiia ; 72(5): 616-20, 2003.
Artigo em Russo | MEDLINE | ID: mdl-14679898

RESUMO

The study of the effect of malonate (an inhibitor of the succinate dehydrogenase complex of the respiratory chain of mitochondria) on the thermotolerance of the fermentative Saccharomyces cerevisiae and nonfermentative Rhodotorula rubra yeasts showed that malonate augmented the damaging effect of heat shock on the yeasts utilizing glucose (or other sugars) by means of oxidative phosphorylation. At the same time, malonate did not influence and sometimes even improved the thermotolerance of the yeasts utilizing glucose through fermentation. The suggestion is made that cell tolerance to heat shock depends on the normal functioning of mitochondria. On the other hand, their increased activity at elevated temperatures may accelerate the formation of cytotoxic reactive oxygen species and, hence, is not beneficial to cells.


Assuntos
Malonatos/farmacologia , Rhodotorula/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fermentação , Glucose/metabolismo , Temperatura Alta , Fosforilação Oxidativa/efeitos dos fármacos , Rhodotorula/metabolismo , Rhodotorula/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Sódio
7.
Mikrobiologiia ; 72(4): 476-81, 2003.
Artigo em Russo | MEDLINE | ID: mdl-14526536

RESUMO

The study of the growth of the yeasts Rhodotorula rubra, Saccharomyces cerevisiae, and Debaryomyces vanriji at elevated temperatures and their survival after transient lethal heat shock showed that the ability of these yeasts to grow at supraoptimal temperatures (i.e., their thermoresistance) and their ability to tolerate lethal heat shocks (i.e., their thermotolerance) are determined by different mechanisms. The thermotolerance of the yeasts is suggested to be mainly determined by the division rate of cells before their exposure to heat shock.


Assuntos
Temperatura Alta , Leveduras/crescimento & desenvolvimento , Adaptação Fisiológica , Divisão Celular , Resposta ao Choque Térmico , Homeostase , Leveduras/citologia
8.
Mikrobiologiia ; 72(2): 174-9, 2003.
Artigo em Russo | MEDLINE | ID: mdl-12751239

RESUMO

The investigation of the effect of the cytochrome oxidase inhibitors sodium cyanide and sodium azide on the thermotolerance of the yeasts Rhodotorula rubra, Debaryomyces vanriji, and Saccharomyces cerevisiae showed that these inhibitors diminish the thermotolerance of R. rubra and D. vanriji, but do not affect the thermotolerance of S. cerevisiae. Taking into account the fact that, unlike the latter yeast, R. rubra and D. vanriji are nonfermentative yeasts, the difference in the effects of the inhibitors on the yeast thermotolerance can be readily explained by the different types of glucose utilization (either oxidative or fermentative) in these yeasts. The data obtained also provide evidence that there is a correlation between the functional activity of mitochondria and the thermotolerance of yeast cells.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Azida Sódica/farmacologia , Cianeto de Sódio/farmacologia , Leveduras/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta , Rhodotorula/efeitos dos fármacos , Rhodotorula/fisiologia , Saccharomyces cerevisiae/fisiologia , Especificidade da Espécie , Leveduras/efeitos dos fármacos
9.
Mikrobiologiia ; 71(6): 768-72, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12526197

RESUMO

The addition of sodium azide (a mitochondrial inhibitor) at a concentration of 0.15 mM to glucosegrown Saccharomyces cerevisiae or Candida albicans cells before exposing them to heat shock increased cell survival. At higher concentrations of azide, its protective effect on glucose-grown cells decreased. Furthermore, azide, even at low concentrations, diminished the thermotolerance of galactose-grown yeast cells. It is suggested that azide exerts a protective effect on the thermotolerance of yeast cells when their energy requirements are met by the fermentation of glucose. However, when cells obtain energy through respiratory metabolism, the azide inhibition of mitochondria enhances damage inflicted on the cells by heat shock.


Assuntos
Candida albicans/fisiologia , Inibidores Enzimáticos/farmacologia , Saccharomyces cerevisiae/fisiologia , Azida Sódica/farmacologia , Candida albicans/crescimento & desenvolvimento , Meios de Cultura , Galactose , Glucose , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
10.
Mikrobiologiia ; 70(4): 531-5, 2001.
Artigo em Russo | MEDLINE | ID: mdl-11558280

RESUMO

The incubation of Saccharomyces cerevisiae at elevated temperature (45 degrees C) stimulated the respiration of yeast cells and decreased their survival rate. The respiration-deficient mutant of this yeast was found to be more tolerant to the elevated temperature than the wild-type strain. At the same time, the cultivation of the wild-type strain in an ethanol-containing medium enhanced the respiration, catalase activity, and thermotolerance of yeast cells, as compared with their growth in a glucose-containing medium. It is suggested that the enhanced respiration of yeast cells at 45 degrees C leads to an intense accumulation of reactive oxygen species, which may be one of the reasons for the heat shock-induced cell death.


Assuntos
Oxigênio/metabolismo , Saccharomyces cerevisiae/fisiologia , Catalase/metabolismo , Etanol , Temperatura Alta , Mutação , Espécies Reativas de Oxigênio/metabolismo
11.
Mikrobiologiia ; 70(3): 300-4, 2001.
Artigo em Russo | MEDLINE | ID: mdl-11450450

RESUMO

The pretreatment of Saccharomyces cerevisiae and Debaryomyces vanriji with sodium azide was found to induce thermotolerance in both yeasts, whereas sodium azide used in combination with heat shock enhanced the thermotolerance of S. cerevisiae and substantially decreased the thermotolerance of D. vanriji. It is suggested that the different responses of the yeasts to sodium azide during heat shock are due to the different functional organizations of their mitochondrial apparatus.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Resposta ao Choque Térmico , Saccharomyces cerevisiae/efeitos dos fármacos , Azida Sódica/farmacologia , Temperatura Alta , Proteínas Mitocondriais , Oxirredutases/metabolismo , Proteínas de Plantas , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
12.
Appl Environ Microbiol ; 65(9): 4292-3, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10473457

RESUMO

The thermophilic bacterium Bacillus sp. strain TB-1 was isolated in association with the yeast Debaryomyces vanriji from hot springs at 46 degrees C. It was shown that TB-1 excreted thiamine into the culture broth, which not only promoted D. vanriji growth in mixed culture but also increased the maximal temperature for yeast growth.


Assuntos
Bacillus/crescimento & desenvolvimento , Saccharomycetales/crescimento & desenvolvimento , Microbiologia da Água , Meios de Cultura , Temperatura Alta , Tiamina/metabolismo
13.
Sov J Dev Biol ; 5(1): 52-9, 1975 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-163496

RESUMO

The content of cytochromes a,b and c, the activity of marker enzymes of the matrix and inner membrane of the mitochondria: glutamate dehydrogenase and cytochrome oxidase, as well as the rate of absorption of O2 by root segments in the presence of respiratory substrates, oxygen, inhibitors of respiration, and dinitrophenol, were determined. The intensification of cell respiration in the phase of elongation is determined not so much by new formation of cytochrome components of the respiratory cycle (during this period there is an accumulation only of cytochrome c) as by reorganization of the respiratory cycle (primarily its portion NADH - cytochrome b) and synthesis of enzymes of the matrix.


Assuntos
Mitocôndrias/fisiologia , Consumo de Oxigênio , Zea mays/crescimento & desenvolvimento , Citocromos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glutamato Desidrogenase/metabolismo , Zea mays/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...