Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 36(2): e22143, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34985777

RESUMO

Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.


Assuntos
Adenosina Desaminase/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...