Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 87(11): 2872-2889, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37318929

RESUMO

The efficiency of UV-activated sodium percarbonate (SPC) and sodium hypochlorite (SHC) in Norfloxacin (Norf) removal from an aqueous solution was assessed. Control experiments were conducted and the synergistic effect of the UV-SHC and UV-SPC processes were 0.61 and 2.89, respectively. According to the first-order reaction rate constants, the process rates were ranked as UV-SPC > SPC > UV and UV-SHC > SHC > UV. Central composite design was applied to determine the optimum operating conditions for maximum Norf removal. Under optimum conditions (UV-SPC: 1 mg/L initial Norf, 4 mM SPC, pH 3, 50 min; UV-SHC: 1 mg/L initial Norf, 1 mM SHC, pH 7, 8 min), the removal yields for the UV-SPC and UV-SHC were 71.8 and 72.1%, respectively. HCO3-, Cl-, NO3-, and SO42- negatively affected both processes. UV-SPC and UV-SHC processes were effective for Norf removal from aqueous solution. Similar removal efficiencies were obtained with both processes; however, this removal efficiency was achieved in a much shorter time and more economically with the UV-SHC process.


Assuntos
Hipoclorito de Sódio , Poluentes Químicos da Água , Norfloxacino , Poluentes Químicos da Água/análise , Oxirredução , Ânions , Carbonatos , Raios Ultravioleta , Peróxido de Hidrogênio
2.
Environ Pollut ; 320: 121074, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641068

RESUMO

This study investigated the performance of combined zero-valent aluminum (ZVAl) and electrochemically activated persulfate (PS) oxidation for the leachate nanofiltration concentrate (NFC) treatment. Firstly, operating parameters in the ZVAl procedure were optimized and under the optimum conditions (ZVAl dose 1 g/L, initial pH 1.5) the removal efficiency of the chemical oxygen demand (COD), UV254, and color were 22.39%, 29.03%, and 48.26%, respectively. Secondly, the effect of various anode types (Ti/RuO2, Ti/IrO2, and Ti/SnO2) within the electrooxidation (EO) process was evaluated. The Ti/RuO2 anode was found to be the most effective one in terms of pollutant removal efficiencies and operation cost. The efficiency of single, binary, and hybrid processes was evaluated by control experiments and the results were ranked as PS < ZVAl < ZVAl + PS < EO < EO + PS < EO + ZVAl < EO + ZVAl + PS. In the following part of the study, the Box-Behnken design was preferred to optimize the operating parameters of the hybrid EO + ZVAl + PS process. The COD, UV254, and color removal efficiencies under optimum conditions (4.88 mM PS dose, 1.6 A current applied, and 120 min reaction time) were 62.1%, 75.2%, and 99.9%, respectively. The estimated and experimentally obtained data were close to each other. The pollutant removal efficiencies increased in parallel with the current density and reaction time; however, the effect of the PS dose remained at a negligible level. The obtained results indicate the effectiveness of the hybrid EO + ZVAl + PS process for the treatment of leachate nanofiltration concentrate under optimized conditions.


Assuntos
Alumínio , Poluentes Químicos da Água , Oxirredução , Eletrodos , Análise da Demanda Biológica de Oxigênio
3.
Environ Technol ; 44(9): 1251-1264, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34813713

RESUMO

Furfural removal by electrochemically activated peroxydisulfate (E-PS) and peroxymonosulfate (E-PMS) was investigated. The effect of different anodes was investigated for the electrochemical activation of oxidants. Box Behnken Design was applied to determine optimum operating conditions, which were determined as follows; PS concentration: 2.3 mM, applied current: 1.15 A, pH: 3.5, and reaction time: 118.3 min for E-PS process; PMS concentration: 1.8 mM, applied current: 1.05 A, pH: 3.3, and reaction time: 107.8 min for E-PMS process. The results of the study showed that the E-PMS process is more advantageous in terms of the chemical and electricity costs to be used.


Assuntos
Furaldeído , Poluentes Químicos da Água , Oxirredução , Sulfatos , Peróxidos , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 30(1): 869-883, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904739

RESUMO

In this study, the performance of ultraviolet (UV)-assisted persulfate (PS) and percarbonate (PC) oxidation processes in oxytetracycline (OTC) removal was investigated. UVC lamps were used for the photolysis process and the effect of operating parameters (initial pH, oxidant dose, initial OTC concentration, UV intensity) on OTC removal efficiency was determined. Control experiments were carried out at pH 5.5 and 32 W UV power for 60 min by adding a 4 mM oxidant with 10 mg/L initial OTC concentration. The OTC removal efficiency obtained as a result of only photolysis was 17.3% and the removal efficiency obtained by PS and PC oxidation alone was 18.3% and 12.7%, respectively. The OTC removal efficiencies increased in the combined processes and reached 58.1% and 69.9% for the UV-PS and UV-PC processes, respectively. The reaction rates of the processes were ranked as UV-PC > UV-PS > PS > UV > PC. In the UV-PS and UV-PC processes, the highest removal efficiencies were achieved at alkaline pH values. The OTC removal efficiency was increased with the increase in oxidant dose; however, the efficiency decreased after a certain dose due to the scavenging effect. The removal efficiency also increased as the initial OTC concentration decreased. The UV intensity had a positive effect on OTC removal efficiency. The effect of the water matrix on OTC removal efficiency was investigated while the dominant radical types were determined in UV-assisted processes. The EE/O values for the UV-PS and UV-PC processes were calculated as 211 kWh/m3 and 153 kWh/m3, respectively for 60 min of reaction time. Although similar removal efficiencies were obtained with both UV-assisted processes, the UV-PC process steps forward in terms of being a novel, environmentally friendly, more economic, and promising technology for OTC removal.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Purificação da Água , Fotólise , Cinética , Poluentes Químicos da Água/análise , Carbonatos , Oxidantes , Oxirredução , Raios Ultravioleta
5.
Environ Res ; 212(Pt C): 113451, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537495

RESUMO

Treatment of paint manufacturing industry wastewater by electrooxidation (EO) process in which peroxymonosulfate (PMS) and transition metals are added was investigated. In the EO/PMS process, graphite was the cathode while different anode materials (Ti/IrO2, Ti/RuO2, and Ti/SnO2) were used. The anode with the highest chemical oxygen demand (COD) and true color removal efficiency was selected. To determine the catalyst effect on the process, different transition metals (Fe2+, Cu2+, Zn2+) were added and Fe2+ was chosen as the catalyst which provided higher removal efficiency and lower cost. The central composite design was applied for the optimization of the process variables of the EO/PMS/Fe2+ process. Current density, PMS dose, Fe2+ dose, and reaction time were process variables whereas COD and true color removal efficiency were system responses. Under optimum conditions (200 A/m2 current density, 14 mM PMS dose, 2.5 mM Fe2+ dose, 60 min reaction time), the estimated COD and true color removal efficiency by the model were 74.89% and 99.86%, respectively. The experimentally obtained COD and true color removal efficiencies as a result of validation studies were 74.28% and 99.03%, respectively. Quenching experiments showed that hydroxyl and sulfate radicals were both involved in the process.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Indústria Manufatureira , Oxirredução , Pintura , Peróxidos
6.
Environ Sci Pollut Res Int ; 29(6): 9110-9123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34495474

RESUMO

Oxytetracycline (OTC) is a broad-spectrum antibiotic that resists biodegradation and poses a risk to the ecosystem. This study investigated the degradation of OTC by heat-activated peroxydisulfate (PDS) and peroxymonosulfate (PMS) processes. Response surface methodology (RSM) was used to evaluate the effect of process parameters, namely initial pH, oxidant concentration, temperature, and reaction time on the OTC removal efficiency. According to the results of the RSM models, all four independent variables were significant for both PDS and PMS processes. The optimum process parameters for the heat-activated PDS process were pH 8.9, PDS concentration 3.9 mM, temperature 72.9°C, and reaction time 26.5 min. For the heat-activated PMS process, optimum conditions were pH 9.0, PMS concentration 4.0 mM, temperature 75.0°C, and reaction time 20.0 min. The predicted OTC removal efficiencies for the PDS and PMS processes were 89.7% and 84.0%, respectively. As a result of the validation experiments conducted at optimum conditions, the obtained OTC removal efficiencies for the PDS and PMS processes were 87.6 ± 4.2 and 80.2± 4.6, respectively. PDS process has higher kinetic constants at all pH values than the PMS process. Both processes were effective in OTC removal from aqueous solution and RSM was efficient in process optimization.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Ecossistema , Temperatura Alta , Peróxidos , Sulfatos , Poluentes Químicos da Água/análise
7.
Water Environ Res ; 93(3): 393-408, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32885546

RESUMO

Medical laboratory wastewaters arising from diagnosis and examination units show highly toxic characteristic. Within the scope of the study, removal of the wastewater's toxicity and increasing BOD5 /COD ratio of the medical laboratory wastewaters through electro-Fenton (EF) process were investigated. In the study, central composite design was applied to optimize the process parameters of EF for COD, BOD5 , and toxicity unit (TU) removal. Based on ANOVA, H2 O2 /COD was found to be significant parameter for COD removal, whereas current, reaction time, and H2 O2 /COD were determined to be significant parameters for BOD5 and TU removal. Optimum conditions (pH value of 3.4, current 3 A, reaction time 33.9 min, and H2 O2 /COD of 1.29) were determined, and predicted removals of COD, BOD5, and TU were found to be 55.1%, 42.5%, and 99.7% and experimental removals were found to be 53.4%, 41.2%, and 99.5%, respectively. TU value of the wastewater decreased from the value of 163-0.815, and BOD5 /COD value increased from the value of 0.32-0.39. The results of the study indicate that EF process is an effective treatment option for COD, BOD5, and especially toxicity removal from medical laboratory wastewater. PRACTITIONER POINTS: Electro-Fenton process was applied medical laboratory wastewater with highly toxic characteristic. Response surface methodology approach using central composite design was employed for modeling. 53.4%, 41.2%, and 99.5% of COD, BOD5, and toxicity removals were achieved under statistically optimized conditions. TU value of the wastewater decreased from the value of 163-0.815. BOD5 /COD value increased from the value of 0.32-0.39.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Laboratórios , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Water Sci Technol ; 81(2): 345-357, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32333667

RESUMO

In this study, the treatment of paper industry wastewaters by the electrocoagulation (EC) process with a strong oxidant, persulfate addition, was investigated. Persulfate was activated by dissolution of Fe and Al from electrodes during the process. Central composite design method, being one of the response surface methods, was applied for the optimization of process parameters and the development of a mathematical model for chemical oxygen demand (COD) removal from paper industry wastewaters. The effects of S2O8 -2/COD ratio, current, pH, and reaction time, being the variables of process, were assessed on the efficiency of contaminant removal. For COD removal in EC processes in which Fe and Al electrodes were used, the model's correlation coefficients (R2) were determined as 90.14% and 87.46%, respectively. As the result of experimental study actualized under optimum conditions determined by the model in order to obtain maximum contaminant removal, COD removal efficiencies were determined as 63.5% and 72.8% respectively for the Fe electrode (S2O8 -2/COD ratio: 1.25, current: 4.14 A, pH: 6, and reaction time: 5 minutes), and the Al electrode (S2O8 -2/COD ratio: 0.5, current: 4.25 A, pH: 7.25, and reaction time: 25 minutes). Electro-activated persulfate process is an appropriate treatment alternative for COD removal from paper industry wastewaters.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais
9.
Water Sci Technol ; 76(7-8): 2015-2031, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29068332

RESUMO

This study deals with chemical oxygen demand (COD), phenol and Ca+2 removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R2 = 0.959, R2 = 0.993 and R2 = 0.969 for COD, phenol and Ca+2 removal, respectively, for EC and R2 = 0.936, R2 = 0.934 and R2 = 0.890 for COD, phenol and Ca+2 removal, respectively). Numerical optimization based on desirability function was employed; in a 27.55 min trial, 34.7% of COD removal was achieved at pH 9 and current density 96 mA/cm2 for EC, whereas in a 30 min trial, 74.31% of COD removal was achieved at pH 2 and current density 96 mA/cm2 and H2O2/COD molar ratio 2.0 for EF. The operating costs were calculated to be 6.44 €/m3 for EC and 7.02 €/m3 for EF depending on energy and electrode consumption at optimum conditions. The results indicate that the RSM is suitable for the design and optimization of both of the processes. However, EF process was a more effective technology for paper mill industry wastewater treatment as compared with EC.


Assuntos
Técnicas Eletroquímicas , Resíduos Industriais/análise , Águas Residuárias/química , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Eletrodos , Recuperação e Remediação Ambiental , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Papel , Fenol , Fenóis , Purificação da Água/métodos
10.
Waste Manag Res ; 30(5): 542-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21746755

RESUMO

The aim of this study was to investigate the aerobic and anaerobic degradation of phenol and its derivatives in aerobic and anaerobic landfills. Phenolic compounds were extracted from leachate samples using the solid phase micro-extraction method. In this study, analysis of the 24 phenolic compounds included in the standard mixture and the change in the concentrations over time of 23 of the 24 compounds found in the calibration mix standard were determined in both aerobic and anaerobic landfill reactors. It can be concluded that faster and complete removal of phenol, chlorophenol, dichlorophenols, and trichlorophenol were achieved in the aerobic landfill while aerobic treatment was less effective on tetrachlorophenol and pentachlorophenol. In the anaerobic landfill, anaerobic reductive dechlorination probably occurred from all the highly chlorinated phenols and resulted in the accumulation of phenol and chlorophenol. The phenol could not be further degraded because the anaerobic methanogenic phase did not start during the 150 days of operation in an anaerobic landfill reactor. Nitrophenols can be degraded rapidly under aerobic conditions. These compounds are degraded to amino groups in the first step and then these amino groups are degraded to methane and CO(2) under anaerobic conditions. Although the degradation could not reach the methanogenic phase in anaerobic landfill reactor during the operational period, it is indicated that nitrophenol concentrations decreased in the anaerobic reactor. This is revealed as a result of the formation of the amino groups.


Assuntos
Fenóis/metabolismo , Eliminação de Resíduos , Aerobiose , Anaerobiose , Biodegradação Ambiental , Projetos Piloto , Microextração em Fase Sólida
11.
Waste Manag Res ; 30(2): 161-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21930522

RESUMO

The main aim of this study was to investigate the effect of leachate recirculation and aeration on volatile fatty acid (VFA) concentrations in aerobic and anaerobic landfill leachate samples. In this study, two aerobic (A1, A2) and two anaerobic (AN1, AN2) reactors with (A1, AN1) and without (A2, AN2) leachate recirculation were used in order to determine the change of volatile fatty acids components in landfill leachate. VFA degradation rate was almost 100% in each reactor but the degradation rate show notable differences. In aerobic landfill reactors, total VFA concentrations decreased below 1000 mg L(-1) after 120 days of operation and only caproic and acetic acids were determined at this time. The stabilization of the VFA concentrations takes about 350 and 450 days for AN1 and AN2 reactors, respectively. VFA concentrations were higher than that of aerobic reactors because of the acidogenic phase occurred in anaerobic environment. According to the results of VFA components, the stabilization of the waste was achieved after 120 days of operation in aerobic landfills. At this time, anaerobic reactors were in the acidogenic phase which results with the high concentrations of VFA. The results also indicated that leachate recirculation does not affect the degradation rate in aerobic landfills as much as it does in anaerobic landfills.


Assuntos
Ácidos Graxos/química , Gerenciamento de Resíduos , Poluentes Químicos da Água/análise , Aerobiose , Anaerobiose , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Ácidos Graxos/análise , Eliminação de Resíduos/métodos , Volatilização , Poluentes Químicos da Água/química
12.
Waste Manag ; 31(11): 2263-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21745733

RESUMO

One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m3) with different composite liners (R1: 0.10+0.10 m of compacted clay liner (CCL), L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10+0.10 m of CCL, L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 1 × 10(-8) m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 4.24 × 10(-7) m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77×10(-10) to 10.67 × 10(-10)m2/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 × 10(-6) m(2)/s to 5.37 × 10(-2) m2/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 × 10(-10) m2/s, 5.37 × 10(-10) m2/s, 2.69 × 10(-10) m2/s and 3.29 × 10(-10) m2/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater is believed to be prevented with the use of zeolite and bentonite materials in landfill liner systems.


Assuntos
Metais Pesados/análise , Fenóis/análise , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/análise , Cinética , Modelos Teóricos , Poluentes Químicos da Água/química
13.
Sci Total Environ ; 409(17): 3183-96, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21621822

RESUMO

Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻8 m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻8 m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻8 m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻8 m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻8 m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings.


Assuntos
Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Silicatos de Alumínio/química , Anaerobiose , Biodegradação Ambiental , Biotransformação , Cloretos/análise , Clorofenóis/análise , Argila , Cresóis/análise , Água Doce/química , Cinética , Metais Pesados/análise , Modelos Químicos , Nitrogênio/análise , Nitrofenóis/análise , Fenóis/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
14.
Bioresour Technol ; 100(21): 4976-80, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19553105

RESUMO

The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH(4)/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH(4)/g dry waste for leachate recirculated (R1) and non-recirculated (R2) reactors, respectively. Results indicated that the average rate constant increased by 32% with leachate recirculation. Also, the performance of the system was modeled using the BMP data for the samples taken from reactors at varying operational times by MATLAB program. The first-order rate constants for R1 and R2 reactors were 0.01571 and 0.01195 1/d, respectively. The correlation between the model and the experimental parameters was more than 95%, showing the good fit of the model.


Assuntos
Metano/química , Modelos Químicos , Eliminação de Resíduos , Poluentes Químicos da Água/química , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...