Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 24(7): 1341-1351, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33934481

RESUMO

Boreal forest soils are important global carbon sinks, with significant storage in the organic topsoil. Decomposition of these stocks requires oxidative enzymes, uniquely produced by fungi. Across Swedish boreal forests, we found that local carbon storage in the organic topsoil was 33% lower in the presence of a group of closely related species of ectomycorrhizal fungi - Cortinarius acutus s.l.. This observation challenges the prevailing view that ectomycorrhizal fungi generally act to increase carbon storage in soils but supports the idea that certain ectomycorrhizal fungi can complement free-living decomposers, maintaining organic matter turnover, nutrient cycling and tree productivity under nutrient-poor conditions. The indication that a narrow group of fungi may exert a major influence on carbon cycling questions the prevailing dogma of functional redundancy among microbial decomposers. Cortinarius acutus s.l. responds negatively to stand-replacing disturbance, and associated population declines are likely to increase soil carbon sequestration while impeding long-term nutrient cycling.


Assuntos
Micorrizas , Taiga , Carbono , Sequestro de Carbono , Cortinarius , Florestas , Fungos , Solo , Microbiologia do Solo , Suécia
2.
FEMS Microbiol Ecol ; 93(9)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957584

RESUMO

Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees.


Assuntos
Fungos/classificação , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Sementes/crescimento & desenvolvimento , Árvores/microbiologia , Biodiversidade , DNA Intergênico/genética , Agricultura Florestal , Florestas , Fungos/genética , Fungos/crescimento & desenvolvimento , Micorrizas/genética , Países Escandinavos e Nórdicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA