Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Comput Biol Med ; 179: 108863, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024903

RESUMO

Methods from artificial intelligence (AI), in general, and machine learning, in particular, have kept conquering new territories in numerous areas of science. Most of the applications of these techniques are restricted to the classification of large data sets, but new scientific knowledge can seldom be inferred from these tools. Here we show that an AI-based amyloidogenecity predictor can strongly differentiate the border- and the internal hexamers of ß-pleated sheets when screening all the Protein Data Bank-deposited homology-filtered protein structures. Our main result shows that more than 30% of internal hexamers of ß sheets are predicted to be amyloidogenic, while just outside the border regions, only 3% are predicted as such. This result may elucidate a general protection mechanism of proteins against turning into amyloids: if the borders of ß-sheets were amyloidogenic, then the whole ß sheet could turn more easily into an insoluble amyloid-structure, characterized by periodically repeated parallel ß-sheets. We also present that no analogous phenomenon exists on the borders of α-helices or randomly chosen subsequences of the studied protein structures.

2.
Sci Rep ; 14(1): 11608, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773163

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.


Assuntos
Biodegradação Ambiental , Metagenômica , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo , Metagenômica/métodos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Fenantrenos/metabolismo , Naftalenos/metabolismo , Metagenoma
3.
Appl Microbiol Biotechnol ; 108(1): 101, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229296

RESUMO

Enzymatic processes play an increasing role in synthetic organic chemistry which requires the access to a broad and diverse set of enzymes. Metagenome mining is a valuable and efficient way to discover novel enzymes with unique properties for biotechnological applications. Here, we report the discovery and biocatalytic characterization of six novel metagenomic opine dehydrogenases from a hot spring environment (mODHs) (EC 1.5.1.X). These enzymes catalyze the asymmetric reductive amination between an amino acid and a keto acid resulting in opines which have defined biochemical roles and represent promising building blocks for pharmaceutical applications. The newly identified enzymes exhibit unique substrate specificity and higher thermostability compared to known examples. The feature that they preferably utilize negatively charged polar amino acids is so far unprecedented for opine dehydrogenases. We have identified two spatially correlated positions in their active sites that govern this substrate specificity and demonstrated a switch of substrate preference by site-directed mutagenesis. While they still suffer from a relatively narrow substrate scope, their enhanced thermostability and the orthogonality of their substrate preference make them a valuable addition to the toolbox of enzymes for reductive aminations. Importantly, enzymatic reductive aminations with highly polar amines are very rare in the literature. Thus, the preparative-scale enzymatic production, purification, and characterization of three highly functionalized chiral secondary amines lend a special significance to our work in filling this gap. KEY POINTS: • Six new opine dehydrogenases have been discovered from a hot spring metagenome • The newly identified enzymes display a unique substrate scope • Substrate specificity is governed by two correlated active-site residues.


Assuntos
Aminas , Metagenoma , Aminas/metabolismo , Aminação , Biocatálise , Aminoácidos/metabolismo , Especificidade por Substrato , Oxirredutases/metabolismo
4.
ACS Omega ; 7(40): 35532-35537, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249386

RESUMO

Hexapeptides are widely applied as a model system for studying the amyloid-forming properties of polypeptides, including proteins. Recently, large experimental databases have become publicly available with amyloidogenic labels. Using these data sets for training and testing purposes, one may build artificial intelligence (AI)-based classifiers for predicting the amyloid state of peptides. In our previous work (Biomolecules 2021, 11, 500), we described the Support Vector Machine (SVM)-based Budapest Amyloid Predictor (https://pitgroup.org/bap). Here, we apply the Budapest Amyloid Predictor for discovering numerous amyloidogenic and nonamyloidogenic hexapeptide patterns with accuracy between 80% and 84%, as surprising and succinct novel rules for further understanding the amyloid state of peptides. For example, we have shown that for any independently mutated residue (position marked by "x"), the patterns CxFLWx, FxFLFx, or xxIVIV are predicted to be amyloidogenic, while those of PxDxxx, xxKxEx, and xxPQxx are nonamyloidogenic. We note that each amyloidogenic pattern with two x's (e.g.,CxFLWx) describes succinctly 202 = 400 hexapeptides, while the nonamyloidogenic patterns comprising four point mutations (e.g.,PxDxxx) give 204 = 160 000 hexapeptides in total. We also examine the restricted substitutions for positions "x" from subclasses of proteinogenic amino acid residues; for example, if "x" is substituted with hydrophobic amino acids, then there exist patterns containing three x's, like MxVVxx, predicted to be amyloidogenic. If we can choose for the x positions any hydrophobic amino acids, except the "structure breaker" proline, then we get amyloid patterns with five x positions, for example, xxxFxx, each corresponding to 32 768 hexapeptides. To our knowledge, no similar applications of artificial intelligence tools or succinct amyloid patterns were described before the present work.

5.
Neurosci Lett ; 791: 136913, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36272557

RESUMO

Determining important vertices in large graphs (e.g., Google's PageRank in the case of the graph of the World Wide Web) facilitated the construction of excellent web search engines, returning the most important hits corresponding to the submitted user queries. Interestingly, finding important edges - instead of vertices - in large graphs has received much less attention until now. Here we examine the human structural braingraph (or connectome), identified by diffusion magnetic resonance imaging (dMRI) methods, with edges connecting cortical and subcortical gray matter areas and weighted by fiber strengths, measured by the number of the discovered fiber tracts along the edge. We identify several "single" important edges in these braingraphs, whose high or low weights imply the sex or the age of the subject observed. We call these edges implicator edges since solely from their weight, one can infer the sex of the subject with more than 67 % accuracy or their age group with more than 62% accuracy. We argue that these brain connections are the most important ones characterizing the sex or the age of the subjects. Surprisingly, the edges implying the male sex are mostly located in the anterior parts of the brain, while those implying the female sex are mostly in the posterior regions. Additionally, most of the inter-hemispheric implicator edges are male ones, while the intra-hemispheric ones are predominantly female edges. Our pioneering method for finding the sex- or age implicator edges can also be applied for characterizing other biological and medical properties, including neurodegenerative- and psychiatric diseases besides the sex or the age of the subject, if large and high-quality neuroimaging datasets become available. We emphasize that our contribution identifies statistically valid single brain connections related to the sex and the age of the subjects in a large and robust dataset. To our knowledge, our results are unprecedented in this aspect.


Assuntos
Conectoma , Masculino , Humanos , Feminino , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Neuroimagem , Imageamento por Ressonância Magnética
6.
Philos Trans R Soc Lond B Biol Sci ; 377(1866): 20210343, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36314157

RESUMO

Contrasting possibilities has a fundamental adaptive value for prediction and learning. Developmental research, however, has yielded controversial findings. Some data suggest that preschoolers might have trouble in planning actions that take into account mutually exclusive possibilities, while other studies revealed an early understanding of alternative future outcomes based on infants' looking behaviour. To better understand the origin of such abilities, here we use pupil dilation as a potential indicator of infants' representation of possibilities. Ten- and 14-month-olds were engaged in an object-identification task by watching video animations where three different objects with identical top parts moved behind two screens. Importantly, a target object emerged from one of the screens but remained in partial occlusion, revealing only its top part, which was compatible with a varying number of possible identities. Just as adults' pupil diameter grows monotonically with the amount of information held in memory, we expected that infants' pupil size would increase with the number of alternatives sustained in memory as candidate identities for the partially occluded object. We found that pupil diameter increased with the object's potential identities in 14- but not in 10-month-olds. We discuss the implications of these results for the foundation of humans' capacities to represent alternatives. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.


Assuntos
Comportamento do Lactente , Aprendizagem , Lactente , Adulto , Humanos
7.
Angew Chem Int Ed Engl ; 61(37): e202208420, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876269

RESUMO

[1,2]-shift of atoms in alkyl fragments belongs to the class of dyotropic rearrangements. Various atoms, including halogens can be involved in the migration, however participation of iodine is unprecedented. Herein, we report our experimental and DFT studies on the oxidation triggered dyotropic rearrangement of iodo and chloro functions via butterfly-type transition state to demonstrate the migrating ability of λ3 -iodane centre. With the exploitation of dyotropic rearrangement we designed and synthesized a novel fluoroalkyl iodonium reagent from industrial feedstock gas HFO-1234yf. We demonstrated that the hypervalent reagent serves as an excellent fluoroalkylation agent for various amines and nitrogen heterocycles.

8.
Sci Rep ; 12(1): 3102, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197486

RESUMO

Gaussian blurring is a well-established method for image data augmentation: it may generate a large set of images from a small set of pictures for training and testing purposes for Artificial Intelligence (AI) applications. When we apply AI for non-imagelike biological data, hardly any related method exists. Here we introduce the "Newtonian blurring" in human braingraph (or connectome) augmentation: Started from a dataset of 1053 subjects from the public release of the Human Connectome Project, we first repeat a probabilistic weighted braingraph construction algorithm 10 times for describing the connections of distinct cerebral areas, then for every possible set of 7 of these graphs, delete the lower and upper extremes, and average the remaining 7 - 2 = 5 edge-weights for the data of each subject. This way we augment the 1053 graph-set to 120 [Formula: see text] 1053 = 126,360 graphs. In augmentation techniques, it is an important requirement that no artificial additions should be introduced into the dataset. Gaussian blurring and also this Newtonian blurring satisfy this goal. The resulting dataset of 126,360 graphs, each in 5 resolutions (i.e., 631,800 graphs in total), is freely available at the site https://braingraph.org/cms/download-pit-group-connectomes/ . Augmenting with Newtonian blurring may also be applicable in other non-image-related fields, where probabilistic processing and data averaging are implemented.


Assuntos
Inteligência Artificial , Conectoma/métodos , Conjuntos de Dados como Assunto , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Internet , Processamento Eletrônico de Dados , Humanos
9.
Cogn Neurodyn ; 15(6): 949-959, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786030

RESUMO

For more than a decade now, we can discover and study thousands of cerebral connections with the application of diffusion magnetic resonance imaging (dMRI) techniques and the accompanying algorithmic workflow. While numerous connectomical results were published enlightening the relation between the braingraph and certain biological, medical, and psychological properties, it is still a great challenge to identify a small number of brain connections closely related to those conditions. In the present contribution, by applying the 1200 Subjects Release of the Human Connectome Project (HCP) and Support Vector Machines, we identify just 102 connections out of the total number of 1950 connections in the 83-vertex graphs of 1064 subjects, which-by a simple linear test-precisely, without any error determine the sex of the subject. Next, we re-scaled the weights of the edges-corresponding to the discovered fibers-to be between 0 and 1, and, very surprisingly, we were able to identify two graph edges out of these 102, such that, if their weights are both 1, then the connectome always belongs to a female subject, independently of the other edges. Similarly, we have identified 3 edges from these 102, whose weights, if two of them are 1 and one is 0, imply that the graph belongs to a male subject-again, independently of the other edges. We call the former 2 edges superfeminine and the first two of the 3 edges supermasculine edges of the human connectome. Even more interestingly, the edge, connecting the right Pars Triangularis and the right Superior Parietal areas, is one of the 2 superfeminine edges, and it is also the third edge, accompanying the two supermasculine connections if its weight is 0; therefore, it is also a "switching" edge. Identifying such edge-sets of distinction is the unprecedented result of this work. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11571-021-09687-w.

10.
Cogn Neurodyn ; 15(5): 915-919, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34603551

RESUMO

The human brain is the most complex object of study we encounter today. Mapping the neuronal-level connections between the more than 80 billion neurons in the brain is a hopeless task for science. By the recent advancement of magnetic resonance imaging (MRI), we are able to map the macroscopic connections between about 1000 brain areas. The MRI data acquisition and the subsequent algorithmic workflow contain several complex steps, where errors can occur. In the present contribution we describe and publish 1064 human connectomes, computed from the public release of the Human Connectome Project. Each connectome is available in 5 resolutions, with 83, 129, 234, 463 and 1015 anatomically labeled nodes. For error correction we follow an averaging and extreme value deleting strategy for each edge and for each connectome. The resulting 5320 braingraphs can be downloaded from the https://braingraph.org site. This dataset makes possible the access to this graphs for scientists unfamiliar with neuroimaging- and connectome-related tools: mathematicians, physicists and engineers can use their expertize and ideas in the analysis of the connections of the human brain. Brain scientists and computational neuroscientists also have a robust and large, multi-resolution set for connectomical studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11571-021-09670-5.

11.
Front Public Health ; 9: 694191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368060

RESUMO

The COVID-19 pandemic had huge impacts on the global world, with both a negative impact on society and economy but a positive one on nature. But this universal effect resulted in different infection rates from country to country. We analyzed the relationship between the pandemic and ecological, economic, and social conditions. All of these data were collected in 140 countries at six time points. Correlations were studied using univariate and multivariate regression models. The world was interpreted as a single global ecosystem consisting of ecosystem units representing countries. We first studied 140 countries around the world together, and infection rates were related to per capita GDP, Ecological Footprint, median age, urban population, and Biological Capacity, globally. We then ranked the 140 countries according to infection rates. We created four groups with 35 countries each. In the first group of countries, the infection rate was very high and correlated with the Ecological Footprint (consumption) and GDP per capita (production). This group is dominated by developed countries, and their ecological conditions have proved to be particularly significant. In country groups 2, 3, and 4, infection rates were high, medium, and low, respectively, and were mainly related to median age and urban population. In the scientific discussion, we have interpreted why infection rates are very high in developed countries. Sustainable ecosystems are balanced, unlike the ecosystems of developed countries. The resilience and the health of both natural ecosystems and humans are closely linked to the world of microbial communities, the microbiomes of the biosphere. It is clear that both the economy and society need to be in harmony with nature, creating sustainable ecosystems in developed countries as well.


Assuntos
COVID-19 , Ecossistema , Humanos , Pandemias , SARS-CoV-2 , Condições Sociais
12.
Org Lett ; 23(12): 4925-4929, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34097412

RESUMO

A novel fluoroalkyl iodide was synthesized on multigram scale from refrigerant gas HFO-1234yf as cheap industrial starting material in a simple, solvent-free, and easily scalable process. We demonstrated its applicability in a metal-free photocatalytic ATRA reaction to synthesize valuable fluoroalkylated vinyl iodides and proved the straightforward transformability of the products in cross-coupling chemistry to obtain conjugated systems.

13.
Front Syst Neurosci ; 15: 645709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108867

RESUMO

Hierarchical counterstream via feedforward and feedback interactions is a major organizing principle of the cerebral cortex. The counterstream, as a topological feature of the network of cortical areas, is captured by the convergence and divergence of paths through directed links. So defined, the convergence degree (CD) reveals the reciprocal nature of forward and backward connections, and also hierarchically relevant integrative properties of areas through their inward and outward connections. We asked if topology shapes large-scale cortical functioning by studying the role of CD in network resilience and Granger causal coupling in a model of hierarchical network dynamics. Our results indicate that topological synchronizability is highly vulnerable to attacking edges based on CD, while global network efficiency depends mostly on edge betweenness, a measure of the connectedness of a link. Furthermore, similar to anatomical hierarchy determined by the laminar distribution of connections, CD highly correlated with causal coupling in feedforward gamma, and feedback alpha-beta band synchronizations in a well-studied subnetwork, including low-level visual cortical areas. In contrast, causal coupling did not correlate with edge betweenness. Considering the entire network, the CD-based hierarchy correlated well with both the anatomical and functional hierarchy for low-level areas that are far apart in the hierarchy. Conversely, in a large part of the anatomical network where hierarchical distances are small between the areas, the correlations were not significant. These findings suggest that CD-based and functional hierarchies are interrelated in low-level processing in the visual cortex. Our results are consistent with the idea that the interplay of multiple hierarchical features forms the basis of flexible functional cortical interactions.

14.
Brain Sci ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800527

RESUMO

Graph theory in the last two decades penetrated sociology, molecular biology, genetics, chemistry, computer engineering, and numerous other fields of science. One of the more recent areas of its applications is the study of the connections of the human brain. By the development of diffusion magnetic resonance imaging (diffusion MRI), it is possible today to map the connections between the 1-1.5 cm2 regions of the gray matter of the human brain. These connections can be viewed as a graph. We have computed 1015-vertex graphs with thousands of edges for hundreds of human brains from one of the highest quality data sources: the Human Connectome Project. Here we analyze the male and female braingraphs graph-theoretically and show statistically significant differences in numerous parameters between the sexes: the female braingraphs are better expanders, have more edges, larger bipartition widths, and larger vertex cover than the braingraphs of the male subjects. These parameters are closely related to the quality measures of highly parallel computer interconnection networks: the better expanding property, the large bipartition width, and the large vertex cover characterize high-quality interconnection networks. We apply the data of 426 subjects and demonstrate the statistically significant (corrected) differences in 116 graph parameters between the sexes.

15.
Biomolecules ; 11(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810341

RESUMO

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel ß-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Assuntos
Amiloide/química , Redes Neurais de Computação , Área Sob a Curva , Biologia Computacional/métodos , Curva ROC
16.
PLoS One ; 15(8): e0236883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817642

RESUMO

While it is still not possible to describe the neuronal-level connections of the human brain, we can map the human connectome with several hundred vertices, by the application of diffusion-MRI based techniques. In these graphs, the nodes correspond to anatomically identified gray matter areas of the brain, while the edges correspond to the axonal fibers, connecting these areas. In our previous contributions, we have described numerous graph-theoretical phenomena of the human connectomes. Here we map the frequent complete subgraphs of the human brain networks: in these subgraphs, every pair of vertices is connected by an edge. We also examine sex differences in the results. The mapping of the frequent subgraphs gives robust substructures in the graph: if a subgraph is present in the 80% of the graphs, then, most probably, it could not be an artifact of the measurement or the data processing workflow. We list here the frequent complete subgraphs of the human braingraphs of 413 subjects (238 women and 175 men), each with 463 nodes, with a frequency threshold of 80%, and identify 812 complete subgraphs, which are more frequent in male and 224 complete subgraphs, which are more frequent in female connectomes.


Assuntos
Gráficos por Computador , Conectoma , Algoritmos , Axônios/metabolismo , Feminino , Humanos , Masculino , Rede Nervosa/citologia , Rede Nervosa/diagnóstico por imagem
17.
Sci Rep ; 10(1): 11967, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686740

RESUMO

The human connectome has become the very frequent subject of study of brain-scientists, psychologists and imaging experts in the last decade. With diffusion magnetic resonance imaging techniques, united with advanced data processing algorithms, today we are able to compute braingraphs with several hundred, anatomically identified nodes and thousands of edges, corresponding to the anatomical connections of the brain. The analysis of these graphs without refined mathematical tools is hopeless. These tools need to address the high error rate of the MRI processing workflow, and need to find structural causes or at least correlations of psychological properties and cerebral connections. Until now, structural connectomics was only rarely able of identifying such causes or correlations. In the present work we study the frequent neighbor sets of the most deeply investigated brain area, the hippocampus. By applying the Frequent Network Neighborhood mapping method, we identified frequent neighbor-sets of the hippocampus, which may influence numerous psychological parameters, including intelligence-related ones. We have found "Good Neighbor" sets, which correlate with better test results and also "Bad Neighbor" sets, which correlate with worse test results. Our study utilizes the braingraphs, computed from the imaging data of the Human Connectome Project's 414 subjects, each with 463 anatomically identified nodes.


Assuntos
Hipocampo/fisiologia , Inteligência , Vias Neurais/fisiologia , Adulto , Estudos de Coortes , Conectoma , Humanos , Adulto Jovem
18.
PLoS One ; 15(1): e0227910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990956

RESUMO

In the study of the human connectome, the vertices and the edges of the network of the human brain are analyzed: the vertices of the graphs are the anatomically identified gray matter areas of the subjects; this set is exactly the same for all the subjects. The edges of the graphs correspond to the axonal fibers, connecting these areas. In the biological applications of graph theory, it happens very rarely that scientists examine numerous large graphs on the very same, labeled vertex set. Exactly this is the case in the study of the connectomes. Because of the particularity of these sets of graphs, novel, robust methods need to be developed for their analysis. Here we introduce the new method of the Frequent Network Neighborhood Mapping for the connectome, which serves as a robust identification of the neighborhoods of given vertices of special interest in the graph. We apply the novel method for mapping the neighborhoods of the human hippocampus and discover strong statistical asymmetries between the connectomes of the sexes, computed from the Human Connectome Project. We analyze 413 braingraphs, each with 463 nodes. We show that the hippocampi of men have much more significantly frequent neighbor sets than women; therefore, in a sense, the connections of the hippocampi are more regularly distributed in men and more varied in women. Our results are in contrast to the volumetric studies of the human hippocampus, where it was shown that the relative volume of the hippocampus is the same in men and women.


Assuntos
Axônios/fisiologia , Conectoma , Hipocampo/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Hipocampo/fisiologia , Humanos , Masculino , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Caracteres Sexuais , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
19.
Materials (Basel) ; 12(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817287

RESUMO

The machining of free form surfaces is one of the most challenging problems in the field of metal cutting technology. The produced part and machining process should satisfy the working, accuracy, and financial requirements. The accuracy can describe dimensional, geometrical, and surface roughness parameters. In the current article, three of them are investigated in the case of the ball-end milling of a convex and concave cylindrical surface form 42CrMo4 steel alloy. The effect of the tool path direction is investigated and the other cutting parameters are constant. The surface roughness and the geometric error are measured by contact methods. Based on the results, the surface roughness, dimensional error, and the geometrical error mean different aspects of the accuracy, but they are not independent from each other. The investigated input parameters have a similar effect on them. The regression analyses result a very good liner regression for geometric errors and shows the importance of surface roughness.

20.
Cogn Neurodyn ; 13(5): 453-460, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31565090

RESUMO

In mapping the human structural connectome, we are in a very fortunate situation: one can compute and compare graphs, describing the cerebral connections between the very same, anatomically identified small regions of the gray matter among hundreds of human subjects. The comparison of these graphs has led to numerous recent results, as the (1) discovery that women's connectomes have deeper and richer connectivity-related graph parameters like those of men, or (2) the description of more and less conservatively connected lobes and cerebral regions, and (3) the discovery of the phenomenon of the consensus connectome dynamics. Today one of the greatest challenges of brain science is the description and modeling of the circuitry of the human brain. For this goal, we need to identify sub-circuits that are present in almost all human subjects and those, which are much less frequent: the former sub-circuits most probably have functions with general importance, the latter sub-circuits are probably related to the individual variability of the brain structure and function. The present contribution describes the frequent connected subgraphs of at most six edges in the human brain. We analyze these frequent graphs and also examine sex differences in these graphs: we demonstrate numerous connected subgraphs that are more frequent in female or male connectomes. While there is no difference in the number of k edge connected subgraphs in males or females for k = 1 , and for k = 2 males have slightly more frequent subgraphs, for k = 6 there is a very strong advantage in the case of female braingraphs. Our data source is the public release of the Human Connectome Project, and we are applying the data of 426 human subjects in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...