Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590155

RESUMO

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Sinucleinopatias/complicações , Sinucleinopatias/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Doença de Parkinson/complicações , Ferro
2.
J Sleep Res ; : e14098, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967854

RESUMO

Sleep symptoms, including excessive sleepiness, are frequently reported by patients with functional motor disorders (FMD). We aimed to classify the comorbid sleep disorders in FMD, and to investigate the relationship between subjective sleepiness and objective measures of hypersomnia, comparing them with data from people with central hypersomnia. A total of 37 patients (mean [SD] age 46.4 [11.2] years) with clinically definite FMD, and 17 patients (mean [SD] age 41.1 [11.6] years) with central hypersomnia underwent structured medical and sleep history, neurological examination, polysomnography, multiple sleep latency test (MSLT), and questionnaires assessing sleepiness, fatigue, and depression. In all, 23 patients with FMD (62%) reported excessive daytime sleepiness. Evidence of specific sleep disorders was identified in our cohort, with 35% having restless legs syndrome; 49% obstructive sleep apnea; and 8% periodic limb movements in sleep; however, the presence of these disorders was not correlated with subjective sleepiness. Patients with FMD with self-reported sleepiness reported higher fatigue (p = 0.002), depression (p = 0.002), and had longer sleep latencies in the MSLT (p < 0.001) compared to the patients with central hypersomnia. No correlation was found between subjective and objective sleepiness in either group. Fatigue positively correlated with self-reported sleepiness in patients with FMD (p < 0.001). This study did not find objective correlates of increased sleepiness in patients with FMD. While sleep abnormalities were found to be common in FMD, they were not correlated with self-reports of excessive sleepiness. Positive correlations between self-reported sleepiness and fatigue support the current unified model of non-motor symptoms in FMD.

3.
NPJ Parkinsons Dis ; 9(1): 112, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452075

RESUMO

REM sleep without atonia (RWA) is the hallmark of isolated REM sleep behavior disorder (iRBD) and is caused by neurodegeneration of brainstem structures. Previously, quantitative susceptibility mapping (QSM) was shown to detect microstructural tissue changes in neurodegenerative diseases. The goal of the study was to compare brainstem magnetic susceptibility (MS) in iRBD and controls using the voxel-based QSM approach and to examine the association between brainstem MS and severity of RWA in iRBD. Sixty iRBD patients and 41 healthy controls were included in the study. Phasic, tonic, mixed RWA and SINBAR score was quantified. QSM maps were reconstructed with QSMbox software from a multi-gradient-echo sequence acquired at 3T MRI system and normalized using a custom T1 template. Voxel-based analysis with age and gender as covariates was performed using a two-sample t-test model for between-group comparison and using a linear regression model for association with the RWA parameters. Statistical maps were generated using threshold free cluster enhancement with p-value p < 0.05, corrected for family wise error. Compared to controls, the iRBD group had higher MS in bilateral substantia nigra (SN), red nucleus and the ventral tegmental area. MS positively correlated with iRBD duration in the right pedunculotegmental nucleus and white matter of caudal mesencephalic and pontine tegmentum and with phasic RWA in bilateral SN. QSM was able to detect MS abnormalities in several brainstem structures in iRBD. Association of MS levels in the brainstem with the intensity of RWA suggests that increased iron content in SN is related to RWA severity.

4.
Quant Imaging Med Surg ; 11(9): 3906-3919, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34476177

RESUMO

BACKGROUND: Iron accumulates in brain tissue in healthy subjects during aging. Our goal was to conduct a detailed analysis of iron deposition patterns in the cerebral deep grey matter and cortex using region-based and whole-brain analyses of brain magnetic susceptibility. METHODS: Brain MRI was performed in 95 healthy individuals aged between 21 and 58 years on a 3T scanner. MRI protocol included T1-weighted (T1W) magnetization-prepared rapid acquisition with gradient echo images and 3D flow-compensated multi-echo gradient-echo images for quantitative susceptibility mapping (QSM). In the region-based analysis, QSM and T1W images entered an automated multi-atlas segmentation pipeline and regional mean bulk susceptibility values were calculated. The whole-brain analysis included a non-linear transformation of QSM images to the standard MNI template. For the whole-brain analysis voxel-wise maps of linear regression slopes ß and P values were calculated. Regional masks of cortical voxels with a significant association between susceptibility and age were created and further analyzed. RESULTS: In cortical regions, the highest increase of susceptibility values with age was found in areas involved in motor functions (precentral and postcentral areas, premotor cortex), in cognitive processing (prefrontal cortex, superior temporal gyrus, insula, precuneus), and visual processing (occipital gyri, cuneus, posterior cingulum, fusiform, calcarine and lingual gyrus). Thalamic susceptibility increased until the fourth decade and decreased thereafter with the exception of the pulvinar where susceptibility increase was observed throughout the adult lifespan. Deep grey matter structures with the highest increase of susceptibility values with age included the red nucleus, putamen, substantia nigra, dentate nucleus, external globus pallidus, caudate nucleus, and the subthalamic nucleus in decreasing order. CONCLUSIONS: Accumulation of iron in basal ganglia follows a linear pattern whereas in the thalamus, pulvinar, precentral cortex, and precuneus, it follows a quadratic or exponential pattern. Age-related changes of iron content are different in the pulvinar and the rest of the thalamus as well as in internal and external globus pallidus. In the cortex, areas involved in motor and cognitive functions and visual processing show the highest iron increase with aging. We suggest that the departure from normal patterns of regional brain iron trajectories during aging may be helpful in the detection of subtle neurodegenerative and neuroinflammatory processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...