Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003122

RESUMO

Reovirus infections in turkeys are associated with arthritis and lameness. Viral genome sequence data are scarce, which makes an accurate description of the viral evolution and epidemiology difficult. In this study, we isolated and characterized turkey reoviruses from Hungary. The isolates were identified in 2016; these isolates were compared with earlier Hungarian turkey reovirus strains and turkey reoviruses isolated in the 2010s in the United States. Gene-wise sequence and phylogenetic analyses identified the cell-receptor binding protein and the main neutralization antigen, σC, to be the most conserved. The most genetically diverse gene was another surface antigen coding gene, µB. This gene was shown to undergo frequent reassortment among chicken and turkey origin reoviruses. Additional reassortment events were found primarily within members of the homologous turkey reovirus clade. Our data showed evidence for low variability among strains isolated from independent outbreaks, a finding that suggests a common source of turkey reoviruses in Hungarian turkey flocks. Given that commercial vaccines are not available, identification of the source of these founder virus strains would permit a more efficient prevention of disease outbreaks before young birds are settled to fattening facilities.

2.
Animals (Basel) ; 13(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37443935

RESUMO

The concern that the vaccines currently used against Avian orthoreovirus (ARV) infections are less efficient in the field justifies the need for the close monitoring of circulating ARV strains. In this study, we collected necropsy samples from various chicken breeds and tested for ARV by virus isolation, RT-PCR assay and sequence analysis. ARVs were isolated from birds showing runting-stunting syndrome, uneven growth, lameness or increased mortality, with relative detection rates of 38%, 35%, 6% and 25%, respectively. Partial σC gene sequences were determined for nearly 90% of ARV isolates. The isolates could be classified into one of the major genetic clusters. Interestingly, cluster 2 and cluster 5 were isolated from vaccinated broiler breeders, while clusters 1 to 4 were isolated from unvaccinated broilers. The isolates shared less than 75% amino acid identities with the vaccine strains (range, 44.3-74.6%). This study reaffirms the global distribution of the major genetic clusters of ARVs in chicken. The diversity of ARV strains isolated from unvaccinated broilers was greater than those detected from vaccinated animals, however, the relative importance of passive and active immunity on the selection of novel strains in different chicken breeds needs to be better understood.

3.
Front Vet Sci ; 10: 1058133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816198

RESUMO

Reovirus infections in reptiles are frequently detected and associated with various clinical diseases; yet, our knowledge about their genetic diversity and evolutionary relationships remains limited. In this study, we characterize at the genomic level five reptile origin orthoreovirus strains isolated from exotic snakes and lizards in Hungary and Germany. The genomic organization of the study strains was similar to that of the representative strains of reptile origin reoviruses belonging to species Reptilian orthoreovirus and Testudine orthoreovirus. Additionally, all five study strains clustered with the bush viper origin reference Reptilian orthoreovirus strain, 47/02. The nucleotide sequence divergence among strains fell from 56.64 to 99.36%. Based on genome segment constellations two well separated groups were observed, which may represent two genetic lineages of reptilian orthoreoviruses we tentatively referred here as genogroups, classifying two squamata origin strains with available whole genome sequences into genogroup I (GGI) and four strains into genogroup II (GGII). The representative GGI and GGII Reptilian orthoreovirus strains are characterized by moderate-to-high nucleotide and amino acid similarities within genogroups (range, 69.45 to 99.36% and 74.64 to 100.00%), whereas lower nucleotide and amino acid similarities (range, 56.64 to 77.24% and 54.53 to 93.85%) and different structures of the bicistronic S1 segment were found between genogroups. Further studies are needed to explore the genomic diversity among reptilian reoviruses of squamata origin; this would be critical to establish a robust classification system for these viruses and to see if interaction among members of distinct lineages may result in viable progenies with novel genetic features.

4.
Microorganisms ; 10(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363786

RESUMO

Monkeypox is an emerging zoonotic disease with a growing prevalence outside of its endemic area, posing a significant threat to public health. Despite the epidemiological and field investigations of monkeypox, little is known about its maintenance in natural reservoirs, biological implications or disease management. African rodents are considered possible reservoirs, although many mammalian species have been naturally infected with the monkeypox virus (MPXV). The involvement of domestic livestock and pets in spillover events cannot be ruled out, which may facilitate secondary virus transmission to humans. Investigation of MPXV infection in putative reservoir species and non-human primates experimentally uncovered novel findings relevant to the course of pathogenesis, virulence factors and transmission of MPXV that provided valuable information for designing appropriate prevention measures and effective vaccines.

5.
Transbound Emerg Dis ; 69(5): e3386-e3392, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810357

RESUMO

A fusogenic virus was isolated from a flock of breeder Pekin ducks in 2019, Hungary. The affected flock experienced a marked decrease in egg production. Histopathological lesions were seen in the oviduct and in the lungs of birds sent for diagnostic investigation. The fusogenic agent was characterized as an orthoreovirus by viral metagenomics. The assembled viral genome was composed of 10 genomic segments and was 23,433 nucleotides (nt) in length. The study strain, designated Reo/HUN/DuckDV/2019, shared low-to-medium gene-wise sequence identity with avian orthoreovirus strains from galliform and anseriform birds (nt, 38.90%-72.33%) as well as with representative strains of neoavian orthoreoviruses (nt, 40.07%-68.23%). On the contrary, the study strain shared 86.48%-95.01% pairwise nt sequence identities with recent German and Chinese reovirus isolates, D2533/6 and Ych, respectively. Phylogenetic analysis clustered all three unusual waterfowl pathogens on a monophyletic branch, indicating a common evolutionary origin of Reo/HUN/DuckDV/2019 with these enigmatic orthoreoviruses described over the past few years. The finding that a candidate new orthoreovirus species, tentatively called Avian orthoreovirus B, was isolated in recent years in Europe and Asia in moribund ducks seems an alarming sign that needs to be better evaluated by extending laboratory diagnosis of viral pathogens in countries where the waterfowl industry is important.


Assuntos
Orthoreovirus Aviário , Orthoreovirus , Infecções por Reoviridae , Animais , Aves , Patos , Genoma Viral , Nucleotídeos , Orthoreovirus/genética , Orthoreovirus Aviário/genética , Filogenia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Análise de Sequência de DNA/veterinária
6.
Front Vet Sci ; 9: 1094761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713877

RESUMO

Introduction: Avian reoviruses (ARV), an important pathogen of poultry, have received increasing interest lately due to their widespread occurrence, recognized genetic diversity, and association to defined disease conditions or being present as co-infecting agents. The efficient control measures require the characterization of the available virus strains. Methods: The present study describes an ARV collection comprising over 200 isolates from diagnostic samples collected over a decade from 34 countries worldwide. One hundred and thirty-six ARV isolates were characterized based on σC sequences. Results and discussion: The samples represented not only arthritis/tenosynovitis and runting-stunting syndrome, but also respiratory symptoms, egg production problems, and undefined disease conditions accompanied with increased mortality, and were obtained from broiler, layer or breeder flocks. In 31 percent of the cases other viral or bacterial agents were demonstrated besides ARV. The most frequent co-infectious agent was infectious bronchitis virus followed by infectious bursal disease virus and adenoviruses. All isolates could be classified in one of the major genetic clusters, although we observed marked discrepancies in the genotyping systems currently in use, a finding that made genotype assignment challenging. Reovirus related clinical symptoms could not be unequivocally connected to any particular virus strains belonging to a specific genetic group, suggesting the lack of strict association between disease forms of ARV infection and the investigated genetic features of ARV strains. Also, large genetic differences were seen between field and vaccine strains. The presented findings reinforce the need to establish a uniform, widely accepted molecular classification scheme for ARV and further, highlight the need for ARV strain identification to support more efficient control measures.

7.
Virus Res ; 297: 198349, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631220

RESUMO

Avian reoviruses are well-known pathogens seriously affecting the productivity of poultry industry. Game birds represent a small segment of the agricultural sector and much remained to be learnt about factors affecting productivity. Here we show that reovirus infections might occur in pheasants and demonstrate that reoviruses of pheasants are of diverse origin. The complete or coding-complete genomic sequences of two Hungarian reovirus strains, D1996/2/1 and Reo/HUN/Pheasant/216/2015, have been determined in this study. The strain D1996/2/1 was isolated in 2012 from birds with gizzard erosion, whereas the other strain was isolated in 2015 from diarrheic pheasant poults. Phylogenetic analyses showed that none of the Hungarian isolates shared common origin with a pheasant reovirus detected recently in the United States. Additionally, we found that Reo/HUN/Pheasant/216/2015 is a multi-reassortant reovirus within the species Avian orthoreovirus that shared genetic relationship with turkey reoviruses (σC), partridge reoviruses (λA, σB), and chicken reoviruses (λB, λC, µA, σA, and σNS), in the respective gene phylogenies, whereas two genes (µB and µNS) did not reveal any possible common ancestors. The other isolate, D1996/2/1, was found to be distantly related to previously described reoviruses raising the possibility that it might represent a novel orthoreovirus species or a new genogroup within the newly accepted species, Neoavian orthoreovirus. The genetic diversity among pheasant reoviruses could raise challenges for virus classification as well as for development of molecular diagnostic tools and vaccine based prevention and control measures.


Assuntos
Galliformes , Orthoreovirus Aviário , Orthoreovirus , Infecções por Reoviridae , Animais , Galliformes/genética , Genoma Viral , Orthoreovirus/genética , Filogenia , Perus
8.
Virus Res ; 257: 57-62, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194945

RESUMO

Complete genomic sequences of two orthoreovirus strains, D2533/4/1-10 and D2533/6/1-10, isolated from Pekin ducklings in Germany have been determined. Pairwise sequence comparisons and phylogenetic analyses indicated that strain D2533/4/1-10 might have acquired its genomic segments from three different origins, from classical and novel waterfowl reoviruses, and a yet unknown orthoreovirus strain. D2533/6/1-10 proved to be only distantly related to previously described orthoreoviruses. Reassortment, host species transmission events, and successful adaptation of novel variants may signify a challenge for animal health and maintenance of economic production.


Assuntos
Doenças das Aves/virologia , Patos/virologia , Genoma Viral , Orthoreovirus Aviário/classificação , Filogenia , Infecções por Reoviridae/veterinária , Animais , Alemanha , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/isolamento & purificação , Vírus Reordenados , Infecções por Reoviridae/virologia , Análise de Sequência de DNA
9.
Emerg Infect Dis ; 24(6): 1061-1068, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774829

RESUMO

A novel protoparvovirus species, related genetically to human bufaviruses, was identified in dogs with respiratory signs. The canine bufavirus was distantly related to the well-known canine protoparvovirus, canine parvovirus type 2, sharing low amino acid identities in the nonstructural protein 1 (40.6%) and in the capsid protein 1 (33.4%). By screening collections of fecal, nasal, and oropharyngeal samples obtained from juvenile dogs (<1 year of age), canine bufavirus DNA appeared as a common component of canine virome. The virus was common in the stool samples of dogs with or without enteric disease and in the nasal and oropharyngeal swab samples of dogs with respiratory signs. However, the virus was not detected in nasal and oropharyngeal swab samples from animals without clinical signs.


Assuntos
Doenças do Cão/virologia , Infecções por Parvoviridae/veterinária , Parvovirus/classificação , Parvovirus/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Cães , Ordem dos Genes , Genes Virais , Genoma Viral , Genômica , Fases de Leitura Aberta , Filogenia , Infecções Respiratórias/veterinária , Replicação Viral
10.
Virus Res ; 227: 96-103, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27671785

RESUMO

Genotype P[14] rotaviruses in humans are thought to be zoonotic strains originating from bovine or ovine host species. Over the past 30 years only few genotype P[14] strains were identified in Hungary totaling<0.1% of all human rotaviruses whose genotype had been determined. In this study we report the genome sequence and phylogenetic analysis of a human genotype G8P[14] strain, RVA/Human-wt/HUN/182-02/2001/G8P[14]. The whole genome constellation (G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) of this strain was shared with another Hungarian zoonotic G8P[14] strain, RVA/Human-wt/HUN/BP1062/2004/G8P[14], although phylogenetic analyses revealed the two rotaviruses likely had different progenitors. Overall, our findings indicate that human G8P[14] rotavirus detected in Hungary in the past originated from independent zoonotic events. Further studies are needed to assess the public health risk associated with infections by various animal rotavirus strains.


Assuntos
Genoma Viral , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Sequenciamento Completo do Genoma , Animais , Pré-Escolar , Fezes/virologia , Variação Genética , Genômica/métodos , Humanos , Hungria/epidemiologia , Masculino , Fases de Leitura Aberta , Filogenia , Filogeografia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Infecções por Rotavirus/transmissão , Análise de Sequência de DNA , Zoonoses
11.
Infect Genet Evol ; 48: 19-26, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27932285

RESUMO

The genus Rotavirus comprises eight species designated A to H and one tentative species, Rotavirus I. In a virus metagenomic analysis of Schreiber's bats sampled in Serbia in 2014 we obtained sequences likely representing novel rotavirus species. Whole genome sequencing and phylogenetic analysis classified the representative strain into a tentative tenth rotavirus species, we provisionally called Rotavirus J. The novel virus shared a maximum of 50% amino acid sequence identity within the VP6 gene to currently known members of the genus. This study extends our understanding of the genetic diversity of rotaviruses in bats.


Assuntos
Quirópteros/virologia , Rotavirus/genética , Animais , Reservatórios de Doenças , Evolução Molecular , Fezes/virologia , Variação Genética , Genoma Viral , Metagenômica , Filogenia , Rotavirus/isolamento & purificação , Análise de Sequência de DNA , Sérvia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...