Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 13(19): 22710-22731, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34628368

RESUMO

Cockayne syndrome (CS) is a rare, autosomal genetic disorder characterized by premature aging-like features, such as cachectic dwarfism, retinal atrophy, and progressive neurodegeneration. The molecular defect in CS lies in genes associated with the transcription-coupled branch of the nucleotide excision DNA repair (NER) pathway, though it is not yet clear how DNA repair deficiency leads to the multiorgan dysfunction symptoms of CS. In this work, we used a mouse model of severe CS with complete loss of NER (Csa-/-/Xpa-/-), which recapitulates several CS-related phenotypes, resulting in premature death of these mice at approximately 20 weeks of age. Although this CS model exhibits a severe progeroid phenotype, we found no evidence of in vitro endothelial cell dysfunction, as assessed by measuring population doubling time, migration capacity, and ICAM-1 expression. Furthermore, aortas from CX mice did not exhibit early senescence nor reduced angiogenesis capacity. Despite these observations, CX mice presented blood brain barrier disruption and increased senescence of brain endothelial cells. This was accompanied by an upregulation of inflammatory markers in the brains of CX mice, such as ICAM-1, TNFα, p-p65, and glial cell activation. Inhibition of neovascularization did not exacerbate neither astro- nor microgliosis, suggesting that the pro-inflammatory phenotype is independent of the neurovascular dysfunction present in CX mice. These findings have implications for the etiology of this disease and could contribute to the study of novel therapeutic targets for treating Cockayne syndrome patients.


Assuntos
Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Barreira Hematoencefálica , Encéfalo/patologia , Dano ao DNA , Reparo do DNA/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Células Endoteliais/fisiologia , Camundongos , Camundongos Knockout , Neuroglia , Doenças Neuroinflamatórias , Proteína de Xeroderma Pigmentoso Grupo A/genética
2.
NPJ Aging Mech Dis ; 2: 16022, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721274

RESUMO

Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa-/-|Xpa-/- mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes.

3.
J Nutr ; 145(8): 1717-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041674

RESUMO

BACKGROUND: Short-term dietary restriction (DR) without malnutrition preconditions against surgical stress in rodents; however, the nutritional basis and underlying nutrient/energy-sensing pathways remain poorly understood. OBJECTIVES: We investigated the relative contribution of protein restriction (PR) vs. calorie restriction (CR) to protection from renal ischemia reperfusion injury (IRI) and changes in organ-autonomous nutrient/energy-sensing pathways and hormones underlying beneficial effects. METHODS: Mice were preconditioned on experimental diets lacking total calories (0-50% CR) or protein/essential amino acids (EAAs) vs. complete diets consumed ad libitum (AL) for 1 wk before IRI. Renal outcome was assessed by serum markers and histology and integrated over a 2-dimensional protein/energy landscape by geometric framework analysis. Changes in renal nutrient/energy-sensing signal transduction and systemic hormones leptin and adiponectin were also measured. The genetic requirement for amino acid sensing via general control non-derepressible 2 (GCN2) was tested with knockout vs. control mice. The involvement of the hormone leptin was tested by injection of recombinant protein vs. vehicle during the preconditioning period. RESULTS: CR-mediated protection was dose dependent up to 50% with maximal 2-fold effect sizes. PR benefits were abrogated by EAA re-addition and additive with CR, with maximal benefits at any given amount of CR occurring with a protein-free diet. GCN2 was not required for functional benefits of PR. Activation and repression of nutrient/energy-sensing kinases, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1), respectively, on PR reflected a state of negative energy balance, paralleled by 13% weight loss and an 87% decrease in leptin, independent of calorie intake. Recombinant leptin administration partially abrogated benefits of dietary preconditioning against renal IRI. CONCLUSIONS: In male mice, PR and CR both contributed to the benefits of short-term DR against renal IRI independent of GCN2 but partially dependent on reduced circulating leptin and coincident with AMPK activation and mTORC1 repression.


Assuntos
Injúria Renal Aguda/prevenção & controle , Restrição Calórica , Proteínas Alimentares/administração & dosagem , Leptina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Área Sob a Curva , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ureia/sangue
4.
Cell Rep ; 8(4): 1160-70, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25131199

RESUMO

Protein restriction (PR) is important for the benefits of dietary restriction on longevity and stress resistance, but relevant nutrient sensors and downstream effectors in mammals remain poorly defined. We used PR-mediated protection from hepatic ischemia reperfusion injury to probe genetic requirements for the evolutionarily conserved nutrient sensors GCN2 and mTORC1 in stress resistance. One week of PR reduced free amino acids and circulating growth factors, activating GCN2 and mTORC1 repressor tuberous sclerosis complex (TSC). However, although GCN2 was dispensable for PR-induced protection, hepatic TSC1 was required. PR improved hepatic insulin sensitivity in a TSC1-dependent manner prior to ischemia, facilitating increased prosurvival signaling and reduced apoptosis after reperfusion. These benefits were partially abrogated by pharmacological PI3K inhibition or genetic deletion of the insulin receptor in hepatocytes. In conclusion, improved insulin sensitivity upon short-term PR required TSC1, facilitated increased prosurvival signaling after injury, and contributed partially to PR-mediated resistance to clinically relevant ischemia reperfusion injury.


Assuntos
Fígado/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Aminoácidos Essenciais/metabolismo , Animais , Células Cultivadas , Dieta com Restrição de Proteínas , Técnicas de Inativação de Genes , Resistência à Insulina , Isquemia/metabolismo , Fígado/irrigação sanguínea , Fígado/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Traumatismo por Reperfusão/dietoterapia , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa
5.
Aging Cell ; 12(6): 1144-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23895664

RESUMO

Cockayne syndrome (CS) is a rare autosomal recessive segmental progeria characterized by growth failure, lipodystrophy, neurological abnormalities, and photosensitivity, but without skin cancer predisposition. Cockayne syndrome life expectancy ranges from 5 to 16 years for the two most severe forms (types II and I, respectively). Mouse models of CS have thus far been of limited value due to either very mild phenotypes, or premature death during postnatal development prior to weaning. The cause of death in severe CS models is unknown, but has been attributed to extremely rapid aging. Here, we found that providing mutant pups with soft food from as late as postnatal day 14 allowed survival past weaning with high penetrance independent of dietary macronutrient balance in a novel CS model (Csa(-/-) | Xpa(-/-)). Survival past weaning revealed a number of CS-like symptoms including small size, progressive loss of adiposity, and neurological symptoms, with a maximum lifespan of 19 weeks. Our results caution against interpretation of death before weaning as premature aging, and at the same time provide a valuable new tool for understanding mechanisms of progressive CS-related progeroid symptoms including lipodystrophy and neurodysfunction.


Assuntos
Síndrome de Cockayne/fisiopatologia , Dieta , Longevidade , Progéria/fisiopatologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Progressão da Doença , Lipodistrofia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...