Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
2.
Toxics ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35051077

RESUMO

In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the metal and accelerate corrosion locally, causing a deterioration in, and alterations to, the performance of devices made of stainless steel. The microorganisms which thus affect stainless steel are mainly algae and bacteria. Within the macroorganisms that then damage the steel, mollusks and crustaceans are the most commonly observed. The aim of this review was to identify the mechanisms involved in biofouling on stainless steel and to evaluate the research done on preventing or mitigating this problem using nanotechnology in humid environments in three areas of human activity: food manufacturing, the implantation of medical devices, and infrastructure in marine settings. Of these protective processes that modify the steel surfaces, three approaches were examined: the use of inorganic nanoparticles; the use of polymeric coatings; and, finally, the generation of nanotextures.

3.
J Hazard Mater ; 181(1-3): 91-104, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20537461

RESUMO

Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 degrees C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na(2)HAsO(4).7H(2)O originally containing 740 ppb.


Assuntos
Arsênio/isolamento & purificação , Carbono/química , Carvão Mineral , Material Particulado/química , Poluentes Químicos da Água/isolamento & purificação , Zeolitas/química , Adsorção , Álcalis/química , Cinza de Carvão , Cristalização , México , Temperatura , Zeolitas/síntese química
4.
J Hazard Mater ; 181(1-3): 82-90, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20546994

RESUMO

The properties of coal fly ash are strongly dependent on the geological origin and the combustion process of the coal. It is important to characterize regional fly ash in detail to ascertain its potential uses as raw material in the production of high value products. The physicochemical properties of fly ash coming from the "Jose Lopez Portillo" coal-fired power plant, Coahuila, Mexico (MFA), are presented in this work. A detailed study of trace elements, the chemical composition of the amorphous phase, thermal stability and the leaching of contaminant elements under different conditions are included. MFA is composed of mullite, quartz, calcite, magnetite and an amorphous phase. This material contains mainly silica (59.6%), alumina (22.8%) and magnetite (5.6%). Its amorphous phase (78.3%) has a high silica (49.4%) and alumina (14.4%) content. According to its mineralogical and chemical composition, MFA is potentially useful as a raw material for making cement, silica, and alumina, as well as low silica/alumina ratio zeolites. Deleterious elements could be removed during the zeolitization process or with an additional acid treatment. Because of its morphological properties and structural and thermal stability, MFA can be used in thermal isolation and refractory materials and as a support for heterogeneous catalysts.


Assuntos
Carbono/análise , Carvão Mineral , Material Particulado/análise , Carbono/química , Cinza de Carvão , Conservação dos Recursos Naturais , México , Material Particulado/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA