Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891756

RESUMO

In recent years, the potential of insects as a sustainable protein alternative to feed the growing world population has been explored. Differences in the ways insects are processed can affect their proximate composition and digestibility. This work studied the effects of the combination of different types of slaughter methods and drying temperatures on the proximate composition, organic matter digestibility (OMd), hydrolysis degree (DH/NH2 and DH/100 g DM), total hydrolysis (TH), and hygienic and sanitary characteristics of BSFL (black soldier fly larvae) meal. Four types of slaughter methods were used including freezing (F), blanching + freezing (B), Melacide® + freezing (M), and liquid nitrogen slaughter (N). Each of these was used with three drying temperatures (50, 70, and 90 °C). A negative correlation between the acid detergent fiber (ADF) and protein digestibility parameters was obtained. The most suitable drying temperature was 70 °C, as it produced higher values of protein digestibility (DH and TH), resulting in hygienic and sanitary conditions suitable for food use. Slaughtering with liquid nitrogen and blanching was more conducive to achieving high protein digestibility results than traditional freezing or the use of Melacide®.

2.
Bioresour Technol ; 372: 128632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657586

RESUMO

The effect of magnetite nanoparticles and nanocomposites (magnetite nanoparticles impregnated into graphene oxide) supplement on the recovery of overloaded laboratory batch anaerobic reactors was assessed using two types of starting inoculum: anaerobic granular sludge (GS) and flocculent sludge (FS). Both nanomaterials recovered methane production at a dose of 0.27 g/L within 40 days in GS. Four doses of magnetite nanoparticles from 0.075 to 1 g/L recovered the process in FS systems between 30 and 50 days relaying on the dose. The presence of nanomaterials helped to reverse the effect of volatile fatty acids inhibition and enabled microbial communities to recover but also favoured the development of certain microorganisms over others. In GS reactors, the methanogenic population changed from being mostly acetoclastic (Methanothrix soehngenii) to being dominated by hydrogenotrophic species (Methanobacterium beijingense). Nanomaterial amendment may serve as a preventative measure or provide an effective remedial solution for system recovery following overloading.


Assuntos
Nanopartículas de Magnetita , Nanocompostos , Esgotos/microbiologia , Anaerobiose , Óxido Ferroso-Férrico , Metano , Reatores Biológicos/microbiologia
3.
Animals (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38200825

RESUMO

Rapid population growth is leading to an increase in the demand for high-quality protein such as fish, which has led to a large increase in aquaculture. However, fish feed is dependent on fishmeal. It is necessary to explore more sustainable protein alternatives that can meet the needs of fish. Insects, due to their high protein content and good amino acid profiles, could be a successful alternative to fishmeal and soybean meal traditionally used in sectors such as aquaculture. In this work, seven species of insects (Hermetia illucens, Tenebrio molitor, Acheta domestica, Alphitobius diaperinus, Gryllodes sigillatus, Gryllus assimilis, and Musca domestica) approved by the European Union (UE) for use as feed for farmed animals (aquaculture, poultry, and pigs) were studied. Their proximate composition, hydrolysis of organic matter (OMd), hydrolysis of crude protein (CPd), degree of hydrolysis (DH/NH2 and DH/100 g DM), and total hydrolysis (TH) were analyzed. The results showed that Tenebrio molitor had digestibility similar to that of fishmeal, while Acheta domestica and Hermetia illucens provided similar digestibility to that of soybean meal. The acid detergent fiber (ADF) data were negatively correlated with all protein digestibility variables. The differences in the degree of hydrolysis (DH) results and the similarity in total hydrolysis (TH) results could indicate the slowing effects of ADF on protein digestibility. Further in vivo studies are needed.

4.
Insects ; 13(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35206700

RESUMO

Fish discards are organic waste with high and good-quality protein levels, as well as a fatty acid profile rich in n-3 LCPUFAs, mainly eicosapentaenoic acid and docosahexaenoic acid. These discards can be used as food for Tenebrio molitor (Linnaeus, 1758) larvae, thus increasing the nutritional value of this insect. This study focused on increasing larval acceptance of fish through different pre-treatments of the diets provided, as well as increasing the accumulation of EPA and DHA in fish-fed larvae. Four different diets were prepared: control (broiler feed), DGF50: 50% dried ground fish (Pagellus bogaraveo, Brünnich, 1768) + 50% broiler feed, for different periods, FGF100: 100% fresh ground P. bogaraveo and DUF100: 100% dried whole unground P. bogaraveo. Growth, mortality, proximate composition, fatty acid profile and lipid nutritional indices were determined. Larvae fed with FGF100 displayed better results among treatments, doubling the initial weight, as well as increasing their protein level and decreasing fat levels. Regarding fatty acids, eicosapentaenoic acid and docosahexaenoic acid were only detected in larvae fed with a fish-based diet for a period longer than 5 days. These results show that pre-treatment of fish-based diets causes changes in the growth and compositional parameters of T. molitor larvae.

5.
Insects ; 12(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821766

RESUMO

Hermetia illucens and Tenebrio molitor were tested on account of their potential to replace fish protein in feed. Two levels of replacement for H. illucens, 30% and 50% (H30 and H50), and one for T. molitor, 50% (T50), as well as an additional diet with a modified fatty acid fraction (H50M), were investigated in relation to juvenile Sparus aurata growth indices, enzyme activities and gut microbiome. A T50 diet showed similar results to a control (C) diet, with no significant differences regarding morphological indices and minor differences for nutritional indices. Regarding the gut microbiome, H50M was the diet which showed the more similar prokaryotic community to C, which suggests that fatty acid fractions might influence the composition of the gut microbiome. Nevertheless, differences appeared to be related to a redistribution of dominant species, while changes in species affiliation were limited to minoritary species. The positive correlation between some of these minoritary species (Peptostreptococcus russellii, Streptococcus dysgalactiae and Weisella confusa) and several fish growth parameters might explain differences between control and insect diets. Deciphering such uncertainty and revealing the potential role these unusual species may play on fish performance should be addressed in future investigations.

6.
Sci Total Environ ; 777: 145969, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33676214

RESUMO

The effects of adding zero-valent iron nanoparticles (nZVI) on the physicochemical, biological and biochemical responses of a semi-continuous anaerobic digestion of sewage sludge have been assessed. Two sets of consecutive experiments of 103 and 116 days, respectively, were carried out in triplicate. nZVI were magnetically retained in the reactors, and the effect of punctual doses (from 0.27 to 4.33 g L-1) over time was studied. Among the different parameters monitored, only methane content in the biogas was significantly higher when nZVI was added. However, this effect was progressively lost after the addition, and in 5-7 days, the methane content returned to initial values. The increase in the oxidation state of nanoparticles seems to be related to the loss of effect over time. Higher dose (4.33 g L-1) sustained positive effects for a longer time along with higher methane content, but this fact seems to be related to microbiome acclimation. Changes in microbial community structure could also play a role in the mechanisms involved in methane enhancement. In this sense, the microbial consortium analysis reported a shift in the balance among acetogenic eubacterial communities, and a marked increase in the relative abundance of members assigned to Methanothrix genus, recognized as acetoclastic species showing high affinity for acetate, which explain the rise in methane content in the biogas. This research demonstrates that biogas methane enrichment in semicontinuous anaerobic digesters can be achieved by using nZVI nanoparticles, thus increasing energy production or reducing costs of a later biogas upgrading process.


Assuntos
Microbiota , Nanopartículas , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Ferro , Metano , Esgotos
7.
Waste Manag ; 106: 32-43, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179419

RESUMO

Home and community composting are considered potential tools for the self-management of organic waste. The production of added value products from biowaste is an encouraging step further to valorise this waste stream. To increase the profits of homemade compost, this paper presents a strategy to produce enriched home compost with biopesticide properties through a simple and low-cost process. Bacillus thuringiensis (Bt) was inoculated in a home composter bin through a solid inoculum previously prepared using the same waste as substrate. The process was monitored and compared with a home composting control process without inoculation. Final composts were analysed and compared in terms of physicochemical and microbiological properties, respiration and germination indices, indicating the suitability of both to be used as organic amendments. Also, a standardized toxicity test proved that Bt-enriched compost can be safely applied to the soil. Microbiological analysis revealed highly diverse communities in both cases, with limited differences at phylum taxonomic level, but dissimilar relative abundances of species within phylum. Bacteroidetes and Proteobacteria were dominant, with the presence of species able to transform organic matter from vegetal origin, but not usually related to compost. Bt-cristal toxin was clearly present in Bt-enriched compost, indicating the coexistence of Bt with the different microbial populations till the end of the composting process. Although Bt has been widely investigated due to its biopesticide properties, the incorporation of this microorganism to home composting level has not been previously reported.


Assuntos
Bacillus thuringiensis , Compostagem , Agentes de Controle Biológico , Solo
8.
Bioresour Technol ; 187: 305-313, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25863208

RESUMO

A comprehensive characterization of the culturable mycobiota associated to all stages of lignocellulose-based composting was achieved. A total of 77 different isolates were detected, 69 of which were identified on the basis of the 5.8-ITS region sequencing. All the isolates were assigned to the phyla Ascomycota and Basidiomycota, with prevalence of the Sordariomycetes (19) and Eurotiomycetes (17) classes. Penicillium was the most represented genus (11 species), while the species Gibellulopsis nigrescens and Microascus brevicaulis were detected at all the composting stages and showed the highest relative abundances. Fungal diversity decreased as the process proceed, while similarity between fungal communities associated to different samples were maximal for those phases closely connected chronologically and showing similar biological activity degree. Thus, the structure of the lignocellulose-based composting mycobiota can be divided into two major stages corresponding to bio-oxidative phase and maturation phase together with the final product, with a transitional cooling stage joining both of them.


Assuntos
Fungos/classificação , Fungos/fisiologia , Resíduos Industriais/prevenção & controle , Lignina/metabolismo , Consórcios Microbianos , Microbiologia do Solo , Agricultura/métodos , Biodiversidade , Fungos/isolamento & purificação , Eliminação de Resíduos/métodos , Especificidade da Espécie
9.
J Environ Manage ; 145: 137-46, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25026369

RESUMO

Successful composting is dependent upon microbial performance. An interdependent relationship is established between environmental and nutritional properties that rule the process and characteristics of the dominant microbial communities. To reach a better understanding of this relationship, the dynamics of major metabolic activities associated with cultivable isolates according to composting phases were evaluated. Ammonification (72.04%), amylolysis (35.65%), hemicellulolyis (30.75%), and proteolysis (33.61%) were the more frequent activities among isolates, with mesophilic bacteria and fungi as the prevalent microbial communities. Bacteria were mainly responsible for starch hydrolysis, while a higher percentage of hemicellulolytic and proteolytic isolates were ascribable to fungi. Composting seems to exert a functional selective effect on microbial communities by promoting the presence of specific metabolically dominant groups at each stage of the process. Moreover, the application of conglomerate analysis led to the statement of a clear correlation between the chronology of the process and characteristics of the associated microbiota. According to metabolic capabilities of the isolates and their density, three clear clusters were obtained corresponding to the start of the process, including the first thermophilic peak, the rest of the bio-oxidative stage, and the maturation phase.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Lignina/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo
10.
Sci Total Environ ; 431: 62-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22664539

RESUMO

Heavy metal pollution has become a major environmental concern nowadays and the bioremediation of polluted habitats is an increasingly popular strategy due to both its efficiency and safety. A screening and selection protocol based on different composting processes was designed in order to isolate heavy metal-resistant microorganisms. A collection of 51 microorganisms was obtained and most of them showed the capability to tolerate heavy metals in multi-polluted aqueous systems (Cd(II), Cr(VI), Ni, Pb, Zn(II)), as well as to remove them. The highest detoxification ratios were observed for Pb. Some of the isolates detoxifying more than a 90% of this metal, while the other metals were removed in a range between 20% and 60%. The best isolates (Graphium putredinis, Fusarium solani, Fusarium sp. and Penicillium chrysogenum) were further assayed in order to determine the predominant removal mechanism and the potential use of their dead biomass as a biosorbent. Intracellular accumulation was the prevalent mechanism for most isolates and metals, with the exception of Ni. In this case, the proportion removed by extracellular adsorption was similar or even higher than that removed by intracellular accumulation. Thus, the efficiency of living cells was higher than that of dead biomass except in the case of Ni.


Assuntos
Biodegradação Ambiental , Fusarium/metabolismo , Metais Pesados/metabolismo , Penicillium chrysogenum/metabolismo , Microbiologia do Solo , Adsorção , Biomassa , Resistência Microbiana a Medicamentos , Fusarium/genética , Metais Pesados/isolamento & purificação , Metais Pesados/farmacologia , Penicillium chrysogenum/genética , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...