Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20085, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418443

RESUMO

Fine-grained population maps are needed in several domains, like urban planning, environmental monitoring, public health, and humanitarian operations. Unfortunately, in many countries only aggregate census counts over large spatial units are collected, moreover, these are not always up-to-date. We present POMELO, a deep learning model that employs coarse census counts and open geodata to estimate fine-grained population maps with [Formula: see text]m ground sampling distance. Moreover, the model can also estimate population numbers when no census counts at all are available, by generalizing across countries. In a series of experiments for several countries in sub-Saharan Africa, the maps produced with POMELO are in good agreement with the most detailed available reference counts: disaggregation of coarse census counts reaches [Formula: see text] values of 85-89%; unconstrained prediction in the absence of any counts reaches 48-69%.


Assuntos
Censos , Monitoramento Ambiental
2.
IEEE Trans Image Process ; 28(7): 3477-3489, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30735996

RESUMO

Superpixel segmentation has emerged as an important research problem in the areas of image processing and computer vision. In this paper, we propose a framework, namely Iterative Spanning Forest (ISF), in which improved sets of connected superpixels (supervoxels in 3D) can be generated by a sequence of image foresting transforms. In this framework, one can choose the most suitable combination of ISF components for a given application-i.e., 1) a seed sampling strategy; 2) a connectivity function; 3) an adjacency relation; and 4) a seed pixel recomputation procedure. The superpixels in ISF structurally correspond to spanning trees rooted at those seeds. We present five ISF-based methods to illustrate different choices for those components. These methods are compared with a number of state-of-the-art approaches with respect to effectiveness and efficiency. Experiments are carried out on several datasets containing 2D and 3D objects with distinct texture and shape properties, including a high-level application, named sky image segmentation. The theoretical properties of ISF are demonstrated in the supplementary material and the results show ISF-based methods rank consistently among the best for all datasets.

3.
IEEE Trans Image Process ; 25(10): 4729-4742, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27448361

RESUMO

The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...