Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749267

RESUMO

Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.

2.
ACS Biomater Sci Eng ; 9(6): 2868-2878, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378160

RESUMO

Live biotherapeutic products (LBPs), including symbiotic and genetically engineered bacteria, are a promising class of emerging therapeutics that are widely investigated both preclinically and clinically for their oral delivery to the gastrointestinal (GI) tract. One emergent delivery strategy involves the direct functionalization of LBP surfaces through noncovalent or covalent modifications to control LBP interactions with the GI microenvironment, thereby improving their viability, attachment, or therapeutic effect. However, unlike other therapeutic modalities, LBPs are living organisms which present two unique challenges for surface modifications: (1) this approach can directly interfere with key LBP biological processes (e.g., colonization, metabolite secretion) and (2) modification can be variable due to the dynamic nature of LBP surfaces. Collectively, these factors remain uncharacterized as they relate to the oral delivery of LBPs. Herein, we leverage our previously reported surface modification platform, which enables LBP surface-presentation of targeting ligands, to broadly evaluate and characterize surface modifications on LBPs. Specifically, we evaluate how LBP growth affects the dilution of surface-presented targeting ligands and the subsequent loss of specific target attachment over time. Next, we describe key surface modification parameters (e.g., concentration, residence time) that can be optimized to facilitate LBP target attachment. We then characterize how bioconjugation influences the suitability of LBPs for oral delivery by evaluating their growth, viability, storage, toxicity against mammalian cells, and in vivo colonization. Broadly, we describe key parameters that influence the performance of surface modified LBPs and subsequently outline an experimental pipeline for characterizing and evaluating their suitability for oral delivery.


Assuntos
Mamíferos , Animais , Ligantes
3.
Nat Biomed Eng ; 5(9): 951-967, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33795852

RESUMO

Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.


Assuntos
Ácidos Nucleicos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Peptídeos , Proteínas
4.
Small ; 16(25): e2001705, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32410314

RESUMO

Live therapeutic bacteria (LTBs) hold promise to treat microbiome-related diseases. However, few approaches to improve the colonization of LTBs in the gastrointestinal tract exist, despite colonization being a prerequisite for efficacy of many LTBs. Here, a modular platform to rapidly modify the surface of LTBs to enable receptor-specific interactions with target surfaces is reported. Inspired by bacterial adhesins that facilitate colonization, synthetic adhesins (SAs) are developed for LTBs in the form of antibodies conjugated to their surface. The SA platform is nontoxic, does not alter LTB growth kinetics, and can be used with any antibody or bacterial strain combination. By improving adhesion, SA-modified bacteria demonstrate enhanced in vitro pathogen exclusion from cell monolayers. In vivo kinetics of SA-modified LTBs is tracked in the feces and intestines of treated mice, demonstrating that SA-modified bacteria alter short-term intestinal transit and improve LTB colonization and pharmacokinetics. This platform enables rapid formation of an intestinal niche, leading to an increased maximum concentration and a 20% improvement in total LTB exposure. This work is the first application of traditional pharmacokinetic analysis to design and evaluate LTB drug delivery systems and provides a platform toward controlling adhesion, colonization, and efficacy of LTBs.


Assuntos
Bactérias , Intestinos , Animais , Camundongos
5.
Bioeng Transl Med ; 3(2): 124-137, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30065967

RESUMO

Next generation microbe-based therapeutics, inspired by the success of fecal microbiota transplants, are being actively investigated in clinical trials to displace or eliminate pathogenic microbes to treat various diseases in the gastrointestinal tract, skin, and vagina. Genetically engineered microbes are also being investigated in the clinic as drug producing factories for biologic delivery, which can provide a constant local source of drugs. In either case, microbe-therapeutics have the opportunity to address unmet clinical needs and open new areas of research by reducing clinical side effects associated with current treatment modalities or by facilitating the delivery of biologics. This review will discuss examples of past and current clinical trials that are investigating microbe-therapeutics, both microbiome-modulating and drug-producing, for the treatment of a range of diseases. We then offer a perspective on how preclinical approaches, both those focused on developing advanced delivery systems and those that use in vitro microbiome model systems to inform formulation design, will lead to the realization of next-generation microbe-therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...