Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 6(4): 2007-2019, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32309635

RESUMO

Graphene family materials (GFMs) are extensively explored for various biomedical applications due to their unique physical properties. The prime challenge is to establish a conclusive safety profile of these nanomaterials and their respective products or devices. Formulating GFMs with appropriate ingredients (e.g., surfactant/compatibilizer) will help to disperse them homogeneously (i.e., within the polymer matrix in the case of polymer-graphene nanocomposites) and aid in good interfacial interaction to achieve the desired properties. However, no cytotoxicity report is available on the effects of the additives on graphene and its incorporated materials. Here, we report in vitro cytotoxicity of formulated FLG (FLG-C), i.e., a mixture of FLG, melamine, and sodium poly(naphthalene sulfonate) (SPS), along with natural rubber (NR) latex and FLG-C-included NR latex nanocomposite (FLG-C-NR) thin films on human vaginal epithelial (HVE) cells. FLG-C shows reduced cellular proliferation (∼55%) only at a longer exposure time (72 h) even at a low concentration (50 µg/mL). It also displays significant down- and upregulation in mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), respectively, whereas no changes are observed in lactate dehydrogenase (LDH), propidium iodide (PI), uptake, and cell cycle analysis at 48 h. In vitro experiments on NR latex and FLG-C-NR latex thin films demonstrate that the incorporation of FLG-C does not compromise the biocompatibility of the NR latex. Further substantiation from the in vivo experiments on the thin films recommends that FLG-C could be suitable to prepare a range of biocompatible rubber latex nanocomposites-based products, viz., next-generation condoms (male and female), surgical gloves, catheters, vaginal rings, bladder-rectum spacer balloon, etc.


Assuntos
Grafite , Nanocompostos , Células Epiteliais , Feminino , Proteínas Filagrinas , Grafite/toxicidade , Humanos , Látex , Masculino , Nanocompostos/toxicidade , Borracha/toxicidade
2.
BMC Res Notes ; 11(1): 596, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30124170

RESUMO

OBJECTIVE: Immunoassay usually deal with the antibody labeling with various reporter molecules, one such useful reporter molecule is horseradish peroxidase (HRPO). Conjugating enzyme with antibody without losing its enzymatic activity is a challenging task. Our aim is to modify existing classical method of conjugating antibodies with HRP to enhance immunoassay techniques with better sensitivity. We used chemicals such as sodium meta periodate to generate aldehyde group by oxidation of carbohydrate moieties on HRPO. The activated form of HRPO is lyophilized and then mixed with 1 mg/ml concentration of antibodies to be conjugate. RESULTS: After confirming chemical modification of conjugates via UV-Spec and SDS-PAGE independent molecules were used for conjugation and HRP-antibody conjugate. Finally, enzymatic activity of HRP-antibody conjugate was confirmed by performing direct ELISA. Functional properties were analyzed using ELISA with dilution of 1:5000, whereas the conjugate prepared by existing method of conjugation worked with as low dilution of 1:25 with a p value highly significant (< 0.001) for classical verses modified method of conjugation preparation. Collectively, this study showed the enhanced ability of antibody to bind more number of HRPO with an additional step of lyophilization in the regular conjugation protocol. Future exploration are necessary on wide range of IgG antibodies.


Assuntos
Anticorpos , Peroxidase do Rábano Silvestre , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Liofilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...