Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 10: 1787-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161738

RESUMO

The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05-1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C).

2.
Dalton Trans ; 42(25): 9245-54, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23104466

RESUMO

A cobalt(III) complex (1) of a salcy-type ligand tethering 4 quaternary ammonium salts, which is thought to act as a highly active catalyst for CO2/propylene oxide (PO) copolymerization, also shows high activity (TOF, 25,900 h(-1); TON, 518,000; 2.72 kg polymer per g cat) and selectivity (>98%) for CO2/ethylene oxide (EO) copolymerization that results in high-molecular-weight polymers (M(n), 200,000-300,000) that have strictly alternating repeating units. The related cobalt(III) complexes 11-14 were prepared through variations of the ligand framework of 1 by replacing the trans-1,2-diaminocyclohexane unit with 2,2-dimethyl-1,3-propanediamine, trans-1,2-diaminocyclopentane, or 1,1'-binaphthyl-2,2'-diamine or by replacing the aldimine bond with ketimine. These ligand frameworks are thought to favour the formation of the cis-ß configuration in complexation, and the formation of the cis-ß configuration in 11-14 was confirmed through NMR studies or X-ray crystallographic studies of model complexes not bearing the quaternary ammonium salts. Complexes 11, 13, and 14, which adopt the cis-ß configuration even in DMSO did not show any activity for CO2/PO copolymerization. Complex 12, which was constructed with trans-1,2-diaminocyclopentane and fluctuated in DMSO between the coordination and de-coordination of the acetate ligand as observed for 1, showed fairly high activity (TOF, 12,400 h(-1)). This fluctuating behaviour may play a role in polymerization. However, complex 12 did not compete with 1 in terms of activity, selectivity, and the catalyst cost.


Assuntos
Dióxido de Carbono/química , Cobalto/química , Óxido de Etileno/química , Etilenodiaminas/química , Compostos Organometálicos/química , Compostos de Amônio Quaternário/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Polimerização , Sais/química
3.
Dalton Trans ; 41(5): 1444-7, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159296

RESUMO

Contrary to the stereotype, Jacobsen's catalyst, chiral (salcy)Co(III)OAc adopts an unusual binding mode. The tetradentate {ONNO} ligand does not form a square plane but wraps cobalt in a cis-ß fashion while acetate is chelating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...