Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898303

RESUMO

AIMS/HYPOTHESIS: Individuals with diabetes are at high risk of cardiovascular complications, which significantly increase morbidity/mortality. Coronary microvascular disease (CMD) is recognised as a critical contributor to the increased cardiac mortality observed in people with diabetes. Therefore, there is an urgent need for treatments that are specific to CMD. eNAMPT (extracellular nicotinamide phosphoribosyltransferase) is a damage-associated molecular pattern and TLR4 ligand, whose plasma levels are elevated in people with diabetes. This study was thus designed to investigate the pathogenic role of intracellular nicotinamide phosphoribosyltransferase (iNAMPT) and eNAMPT in promoting the development of CMD in a preclinical murine model of type 2 diabetes. METHODS: An inducible type 2 diabetic mouse model was generated by a single injection of low-dose streptozocin (75 mg/kg, i.p.) combined with a high-fat diet for 16 weeks. The in vivo effects of i/eNAMPT inhibition on cardiac endothelial cell (CEC) function were evaluated by using Nampt+/- heterozygous mice, chronic administration of eNAMPT-neutralising monoclonal antibody (mAb) or use of an NAMPT enzymatic inhibitor (FK866). RESULTS: As expected, diabetic wild-type mice exhibited significantly lower coronary flow velocity reserve (CFVR), a determinant of coronary microvascular function, compared with control wild-type mice. eNAMPT plasma levels or expression in CECs were significantly greater in diabetic mice than in control mice. Furthermore, in comparison with diabetic wild-type mice, diabetic Nampt+/- heterozygous mice showed markedly improved CFVR, accompanied by increased left ventricular capillary density and augmented endothelium-dependent relaxation (EDR) in the coronary artery. NAMPT inhibition by FK866 or an eNAMPT-neutralising mAb significantly increased CFVR in diabetic mice. Furthermore, administration of the eNAMPT mAb upregulated expression of angiogenesis- and EDR-related genes in CECs from diabetic mice. Treatment with either eNAMPT or NAD+ significantly decreased CEC migration and reduced EDR in coronary arteries, partly linked to increased production of mitochondrial reactive oxygen species. CONCLUSIONS/INTERPRETATION: These data indicate that increased i/eNAMPT expression contributes to the development of diabetic coronary microvascular dysfunction, and provide compelling support for eNAMPT inhibition as a novel and effective therapeutic strategy for CMD in diabetes.

2.
Res Sq ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205391

RESUMO

The role of the lung's microcirculation and capillary endothelial cells in normal physiology and the pathobiology of pulmonary diseases is unequivocally vital. The recent discovery of molecularly distinct aerocytes and general capillary (gCaps) endothelial cells by single-cell transcriptomics (scRNAseq) advanced the field in understanding microcirculatory milieu and cellular communications. However, increasing evidence from different groups indicated the possibility of more heterogenic structures of lung capillaries. Therefore, we investigated enriched lung endothelial cells by scRNAseq and identified five novel populations of gCaps with distinct molecular signatures and roles. Our analysis suggests that two populations of gCaps that express Scn7a(Na+) and Clic4(Cl-) ion transporters form the arterial-to-vein zonation and establish the capillary barrier. We also discovered and named mitotically-active "root" cells (Flot1+) on the interface between arterial, Scn7a+, and Clic4 + endothelium, responsible for the regeneration and repair of the adjacent endothelial populations. Furthermore, the transition of gCaps to a vein requires a venous-capillary endothelium expressing Lingo2. Finally, gCaps detached from the zonation represent a high level of Fabp4, other metabolically active genes, and tip-cell markers showing angiogenesis-regulating capacity. The discovery of these populations will translate into a better understanding of the involvement of capillary phenotypes and their communications in lung disease pathogenesis.

3.
Transl Res ; 247: 1-18, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35405322

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Citocinas/metabolismo , Feminino , Homeostase , Humanos , Masculino , Oxirredução
4.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L508-L521, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502933

RESUMO

We have previously reported that several patients with idiopathic pulmonary hypertension (PH) had different types of G6PD deficiency. However, the role of G6PD in PH is multifactorial because G6PD is involved in controlling oxidative stress, metabolic switch, and red blood cell fragility. To delineate the contribution of G6PD to PH pathogenesis, we utilized a mouse line with decreased expression of G6PD (10% from wild-type level). We confirmed that mice with G6PD deficiency develop spontaneous pulmonary hypertension with pulmonary artery and right heart remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38 pathway, which we recently reported induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD deficient mice indicates the switch to alternative metabolic fluxes that feed into the pentose phosphate pathway (PPP), resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found the upregulation of myo-inositol oxidase, reduction in GSH/GSSG ratio, and increased nitration in the lungs of G6PD-deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2, and AMPK that contribute to the proliferation of pulmonary vasculature. Therefore, G6PD deficiency has a multimodal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to the PH phenotype in mice.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/complicações , Glucosefosfato Desidrogenase/metabolismo , Hipertensão Pulmonar/patologia , Metaboloma , Estresse Oxidativo , Artéria Pulmonar/patologia , Animais , Estudos de Casos e Controles , Feminino , Hemólise , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Oxirredução , Artéria Pulmonar/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 41(2): 734-754, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33297749

RESUMO

OBJECTIVE: NFU1 is a mitochondrial iron-sulfur scaffold protein, involved in iron-sulfur assembly and transfer to complex II and LAS (lipoic acid synthase). Patients with the point mutation NFU1G208C and CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-generated rats develop mitochondrial dysfunction leading to pulmonary arterial hypertension. However, the mechanistic understanding of pulmonary vascular proliferation due to a single mutation in NFU1 remains unresolved. Approach and Results: Quantitative proteomics of isolated mitochondria showed the entire phenotypic transformation of NFU1G206C rats with a disturbed mitochondrial proteomic landscape, involving significant changes in the expression of 208 mitochondrial proteins. The NFU1 mutation deranged the expression pattern of electron transport proteins, resulting in a significant decrease in mitochondrial respiration. Reduced reliance on mitochondrial respiration amplified glycolysis in pulmonary artery smooth muscle cell (PASMC) and activated GPD (glycerol-3-phosphate dehydrogenase), linking glycolysis to oxidative phosphorylation and lipid metabolism. Decreased PDH (pyruvate dehydrogenase) activity due to the lipoic acid shortage is compensated by increased fatty acid metabolism and oxidation. PASMC became dependent on extracellular fatty acid sources due to upregulated transporters such as CD36 (cluster of differentiation 36) and CPT (carnitine palmitoyltransferase)-1. Finally, the NFU1 mutation produced a dysregulated antioxidant system in the mitochondria, leading to increased reactive oxygen species levels. PASMC from NFU1 rats showed apoptosis resistance, increased anaplerosis, and attained a highly proliferative phenotype. Attenuation of mitochondrial reactive oxygen species by mitochondrial-targeted antioxidant significantly decreased PASMC proliferation. CONCLUSIONS: The alteration in iron-sulfur metabolism completely transforms the proteomic landscape of the mitochondria, leading toward metabolic plasticity and redistribution of energy sources to the acquisition of a proliferative phenotype by the PASMC.


Assuntos
Apoptose , Proliferação de Células , Reprogramação Celular , Metabolismo Energético , Mitocôndrias Hepáticas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Mutação Puntual , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Feminino , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Proteoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Hypertension ; 76(6): 1787-1799, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012199

RESUMO

Damage-associated molecular patterns, such as HMGB1 (high mobility group box 1), play a well-recognized role in the development of pulmonary arterial hypertension (PAH), a progressive fatal disease of the pulmonary vasculature. However, the contribution of the particular type of vascular cells, type of cell death, or the form of released HMGB1 in PAH remains unclear. Moreover, although male patients with PAH show a higher level of circulating HMGB1, its involvement in the severe PAH phenotype reported in males is unknown. In this study, we aimed to investigate the sources and active forms of HMGB1 released from damaged vascular cells and their contribution to the progressive type of PAH in males. Our results showed that HMGB1 is released by either pulmonary artery human endothelial cells or human pulmonary artery smooth muscle cells that underwent necrotic cell death, although only human pulmonary artery smooth muscle cells produce HMGB1 during apoptosis. Moreover, only human pulmonary artery smooth muscle cell death induced a release of dimeric HMGB1, found to be mitochondrial reactive oxygen species dependent, and TLR4 (toll-like receptor 4) activation. The modified Sugen/Hypoxia rat model replicates the human sexual dimorphism in PAH severity (right ventricle systolic pressure in males versus females 54.7±2.3 versus 44.6±2 mm Hg). By using this model, we confirmed that necroptosis and necrosis are the primary sources of circulating HMGB1 in the male rats, although only necrosis increased circulation of HMGB1 dimers. Attenuation of necrosis but not apoptosis or necroptosis prevented TLR4 activation in males and blunted the sex differences in PAH severity. We conclude that necrosis, through the release of HMGB1 dimers, predisposes males to a progressive form of PAH.


Assuntos
Proteína HMGB1/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Remodelação Vascular , Animais , Apoptose , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Proteína HMGB1/sangue , Humanos , Hipertensão Pulmonar/patologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Necrose , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/patologia , Ratos Sprague-Dawley , Fatores Sexuais
7.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784406

RESUMO

The mitochondria play a vital role in controlling cell metabolism and regulating crucial cellular outcomes. We previously demonstrated that chronic inhibition of the mitochondrial complex III in rats by Antimycin A (AA) induced sustained pulmonary vasoconstriction. On the metabolic level, AA-induced mitochondrial dysfunction resulted in a glycolytic shift that was reported as the primary contributor to pulmonary hypertension pathogenesis. However, the regulatory proteins driving this metabolic shift with complex III inhibition are yet to be explored. Therefore, to delineate the mechanisms, we followed changes in the rat lung mitochondrial proteome throughout AA treatment. Rats treated with AA for up to 24 days showed a disturbed mitochondrial proteome with significant changes in 28 proteins (p < 0.05). We observed a time-dependent decrease in the expression of key proteins that regulate fatty acid oxidation, the tricarboxylic acid cycle, the electron transport chain, and amino acid metabolism, indicating a correlation with diminished mitochondrial function. We also found a significant dysregulation in proteins that controls the protein import machinery and the clearance and detoxification of oxidatively damaged peptides via proteolysis and mitophagy. This could potentially lead to the onset of mitochondrial toxicity due to misfolded protein stress. We propose that chronic inhibition of mitochondrial complex III attenuates mitochondrial function by disruption of the global mitochondrial metabolism. This potentially aggravates cellular proliferation by initiating a glycolytic switch and thereby leads to pulmonary hypertension.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Proteômica , Animais , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Feminino , Modelos Biológicos , Proteoma/metabolismo , Ratos
8.
Blood ; 136(6): 749-754, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548640

RESUMO

Several studies demonstrate that hemolysis and free heme in circulation cause endothelial barrier dysfunction and are associated with severe pathological conditions such as acute respiratory distress syndrome, acute chest syndrome, and sepsis. However, the precise molecular mechanisms involved in the pathology of heme-induced barrier disruption remain to be elucidated. In this study, we investigated the role of free heme in the endothelial barrier integrity and mechanisms of heme-mediated intracellular signaling of human lung microvascular endothelial cells (HLMVECs). Heme, in a dose-dependent manner, induced a rapid drop in the endothelial barrier integrity of HLMVECs. An investigation into barrier proteins revealed that heme primarily affected the tight junction proteins zona occludens-1, claudin-1, and claudin-5, which were significantly reduced after heme exposure. The p38MAPK/HSP27 pathway, involved in the regulation of endothelial cytoskeleton remodeling, was also significantly altered after heme treatment, both in HLMVECs and mice. By using a knockout (KO) mouse for MKK3, a key regulator of the p38MAPK pathway, we showed that this KO effectively decreased heme-induced endothelial barrier dysfunction. Taken together, our results indicate that targeting the p38MAPK pathway may represent a crucial treatment strategy in alleviating hemolytic diseases.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Heme/farmacologia , MAP Quinase Quinase 3/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Antígenos CD/análise , Caderinas/análise , Permeabilidade Capilar/fisiologia , Células Cultivadas , Claudinas/análise , Células Endoteliais/fisiologia , Proteínas de Choque Térmico HSP27/fisiologia , Proteínas de Choque Térmico/fisiologia , Hemólise , Humanos , Pulmão/irrigação sanguínea , MAP Quinase Quinase 3/deficiência , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Microvasos/citologia , Chaperonas Moleculares/fisiologia , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/análise , Proteínas Quinases p38 Ativadas por Mitógeno
9.
Biol Sex Differ ; 11(1): 11, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188512

RESUMO

BACKGROUND: The mechanisms involved in pulmonary hypertension (PH) development in patients and pre-clinical models are poorly understood. PH has a well-established sex dimorphism in patients with increased frequency of PH in females, and more severe disease with poor survival prognosis in males. Previously, we found that heme signaling plays an essential role in the development phase of the Sugen/Hypoxia (SU/Hx) model. This study is focused on the elucidation of sex differences in mechanisms of PH development related to heme action at the early stage of the monocrotaline (MCT) PH model. METHODS: Rats received MCT injection (60 mg/kg, i.p.) and followed for 14 days to investigate early disease changes. Hemodynamic parameters were recorded at the end of the study; plasma, lung homogenates, and nuclear fractions were used for the evaluation of protein levels. RESULTS: Our data indicate that on day 14, rats did not show any significant increase in the Fulton index due to the early disease phase. However, the right ventricular systolic pressure was significantly increased in male rats, while female rats showed only a trend. Interestingly, only males demonstrated an increased lung-to-bodyweight ratio that indicated lung edema. Indeed, lung histology confirmed severe perivascular edema in males. Previously, we have reported that the increased perivascular edema in SU/Hx model correlated with intravascular hemolysis and activated heme signaling. Here, we found that elevated free hemoglobin levels and perivascular edema were increased, specifically in males showing more rapid progress of PH. A high level of heme carrier protein 1 (HCP-1), which is involved in heme uptake from the bloodstream into the cells, was also found elevated in the lungs of males. The upregulation of heme oxygenase in males indicated increased intracellular heme catabolism. Increased heme signaling resulted in the activation of heme-mediated barrier-disruptive mechanisms. Thus, hemolysis in males can be responsible for increased permeability of the lungs and early disease development. CONCLUSIONS: Our study indicates the importance of barrier-disruptive mechanisms as an earlier event in the induction of pulmonary hypertension. Importantly, males are more susceptible to hemolysis and develop PH earlier than females.


Assuntos
Permeabilidade Capilar , Heme/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/patologia , Caracteres Sexuais , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Hemólise , Hipertensão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Masculino , Monocrotalina/administração & dosagem , Ratos Sprague-Dawley , Junções Íntimas/metabolismo
10.
J Clin Med ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041182

RESUMO

Vascular remodeling is considered a key event in the pathogenesis of pulmonary arterial hypertension (PAH). However, mechanisms of gaining the proliferative phenotype by pulmonary vascular cells are still unresolved. Due to well-established pyruvate dehydrogenase (PDH) deficiency in PAH pathogenesis, we hypothesized that the activation of another branch of pyruvate metabolism, anaplerosis, via pyruvate carboxylase (PC) could be a key contributor to the metabolic reprogramming of the vasculature. In sugen/hypoxic PAH rats, vascular proliferation was found to be accompanied by increased activation of Akt signaling, which upregulated membrane Glut4 translocation and caused upregulation of hexokinase and pyruvate kinase-2, and an overall increase in the glycolytic flux. Decreased PDH activity and upregulation of PC shuttled more pyruvate to oxaloacetate. This results in the anaplerotic reprogramming of lung vascular cells and their subsequent proliferation. Treatment of sugen/hypoxia rats with the PC inhibitor, phenylacetic acid 20 mg/kg, starting after one week from disease induction, significantly attenuated right ventricular systolic pressure, Fulton index, and pulmonary vascular cell proliferation. PC inhibition reduced the glycolytic shift by attenuating Akt-signaling, glycolysis, and restored mitochondrial pyruvate oxidation. Our findings suggest that targeting PC mediated anaplerosis is a potential therapeutic intervention for the resolution of vascular remodeling in PAH.

11.
Antioxidants (Basel) ; 9(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991719

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary disorder instigated by pulmonary vascular cell proliferation. Activation of Akt was previously reported to promote vascular remodeling. Also, the irreversible nitration of Y350 residue in Akt results in its activation. NitroAkt was increased in PAH patients and the SU5416/Hypoxia (SU/Hx) PAH model. This study investigated whether the prevention of Akt nitration in PAH by Akt targeted nitroxide-conjugated peptide (NP) could reverse vascular remodeling and metabolic reprogramming. Treatment of the SU/Hx model with NP significantly decreased nitration of Akt in lungs, attenuated right ventricle (RV) hypertrophy, and reduced RV systolic pressure. In the PAH model, Akt-nitration induces glycolysis by activation of the glucose transporter Glut4 and lactate dehydrogenase-A (LDHA). Decreased G6PD and increased GSK3ß in SU/Hx additionally shunted intracellular glucose via glycolysis. The increased glycolytic rate upregulated anaplerosis due to activation of pyruvate carboxylase in a nitroAkt-dependent manner. NP treatment resolved glycolytic switch and activated collateral pentose phosphate and glycogenesis pathways. Prevention of Akt-nitration significantly controlled pyruvate in oxidative phosphorylation by decreasing lactate and increasing pyruvate dehydrogenases activities. Histopathological studies showed significantly reduced pulmonary vascular proliferation. Based on our current observation, preventing Akt-nitration by using an Akt-targeted nitroxide-conjugated peptide could be a useful treatment option for controlling vascular proliferation in PAH.

12.
Am J Respir Cell Mol Biol ; 62(2): 231-242, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31461310

RESUMO

NFU1 is a mitochondrial protein that is involved in the biosynthesis of iron-sulfur clusters, and its genetic modification is associated with disorders of mitochondrial energy metabolism. Patients with autosomal-recessive inheritance of the NFU1 mutation G208C have reduced activity of the respiratory chain Complex II and decreased levels of lipoic-acid-dependent enzymes, and develop pulmonary arterial hypertension (PAH) in ∼70% of cases. We investigated whether rats with a human mutation in NFU1 are also predisposed to PAH development. A point mutation in rat NFU1G206C (human G208C) was introduced through CRISPR/Cas9 genome editing. Hemodynamic data, tissue samples, and fresh mitochondria were collected and analyzed. NFU1G206C rats showed increased right ventricular pressure, right ventricular hypertrophy, and high levels of pulmonary artery remodeling. Computed tomography and angiography of the pulmonary vasculature indicated severe angioobliterative changes in NFU1G206C rats. Importantly, the penetrance of the PAH phenotype was found to be more prevalent in females than in males, replicating the established sex difference among patients with PAH. Male and female homozygote rats exhibited decreased expression and activity of mitochondrial Complex II, and markedly decreased pyruvate dehydrogenase activity and lipoate binding. The limited development of PAH in males correlated with the preserved levels of oligomeric NFU1, increased expression of ISCU (an alternative branch of the iron-sulfur assembly system), and increased complex IV activity. Thus, the male sex has additional plasticity to overcome the iron-sulfur cluster deficiency. Our work describes a novel, humanized rat model of NFU1 deficiency that showed mitochondrial dysfunction similar to that observed in patients and developed PAH with the same sex dimorphism.


Assuntos
Proteínas de Transporte/genética , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita/genética , Mutação/genética , Animais , Humanos , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fenótipo , Ratos
13.
Redox Rep ; 22(6): 346-352, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28209094

RESUMO

OBJECTIVES: Arsenic trioxide (As2O3) is a potent drug for acute promyelocytic leukaemia, but its clinical trials are allied with some serious adverse events mainly cardiac functional abnormalities. So the objective of our investigation is to identify the cardioprotective action of flaxseed oil (FSO), a natural compound against As2O3 induced cardiotoxicity. METHODS: Male wistar rats were treated with As2O3 (4 mg/kg) to induce cardiotoxicity. FSO (250 and 500 mg/kg) was given in combination with As2O3 for evaluating its cardioprotective efficacy. RESULTS: Treatment with As2O3 resulted in deposition of arsenic in heart tissue, increased cardiac marker enzymes release, lipid peroxidation (LPO), oxidative insults and pathological damages in the heart. Co-treatment with FSO (500 mg/kg) significantly reduced the arsenic accumulation, cardiac marker enzymes, LPO and cardiac structural alterations. FSO treatment significantly improved cardiac glutathione content, antioxidant enzymes and reduced the pathological damages in cardiac tissue. Gas chromatographic-mass spectrometry analysis revealed that the major fatty acid content in the FSO is alpha-linolenic acid, which has a strong milieu in cardiac health. CONCLUSION: The results of the current investigation suggested that FSO is an effective agent in reducing arsenic-induced cardiac toxicity and can be used as an adjunct/dietary supplement for the cancer patients on As2O3 therapy.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Óleo de Semente do Linho/uso terapêutico , Óxidos/toxicidade , Animais , Antioxidantes/metabolismo , Trióxido de Arsênio , Arsenicais , Cardiotoxicidade/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Biomed Pharmacother ; 87: 427-436, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28068633

RESUMO

Boerhavia diffusa is a renowned edible medicinal plant extensively used against different ailments including heart diseases in the traditional system of medicine in several countries. The present study aims to evaluate the therapeutic efficacy of ethanolic extract of Boerhavia diffusa (BDE) on cardiac hypertrophy and fibrosis induced by angiotensin II (Ang II) in male wistar rats and to identify the active components present in it. A substantial increase of hypertrophy markers such as cardiac mass index, concentration of ANP and BNP, cardiac injury markers like CK-MB, LDH and SGOT, has been observed in hypertrophied groups whereas BDE treatment attenuated these changes when compared to hypertrophied rats. Moreover, Ang II induced myocardial oxidative stress was reduced by BDE which was apparent from diminished level of lipid and protein oxidation products, increased activities of membrane bound ATPases and endogenous antioxidant enzymes along with enhanced translocation of Nrf2 from the cytosol to nucleus. It appears that BDE evokes its antioxidant effects by attenuating lipid peroxidation, enhancing the translocation of Nrf2 from the cytoplasm to nucleus as well as by regulating the metabolism of glutathione. The extent of fibrosis during cardiac hypertrophy was determined by histopathology analysis and the results revealed that BDE treatment considerably reduced the fibrosis in the heart. HPLC analysis of BDE leads to the identification of four compounds viz., quercetin, kaempferol, boeravinone B and caffeic acid. The study substantiate the effect of B. diffusa in protecting the heart from pathological hypertrophy and the attenuation of cardiac abnormalities may be partly attributed through the reduction of oxidative stress and cardiac fibrosis. Since the plant is widely used as a green leafy vegetable, incorporation of this plant in diet may be an alternative way for the prevention and better management of heart diseases and associated complications.


Assuntos
Angiotensina II/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Nyctaginaceae/química , Polifenóis/farmacologia , Animais , Antioxidantes/metabolismo , Cardiomegalia/metabolismo , Etanol/química , Fibrose/metabolismo , Glutationa/metabolismo , Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Quercetina/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Cardiovasc Toxicol ; 17(2): 109-119, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26886836

RESUMO

Arsenic trioxide (As2O3) is a highly effective therapeutic against acute promyelocytic leukaemia, but its clinical efficacy is burdened by serious cardiac toxicity. The present study was performed to evaluate the effect of omega (ω)-3 fatty acid on As2O3-induced cardiac toxicity in in vivo and in vitro settings. In in vivo experiments, male Wistar rats were orally administered with As2O3 4 mg/kg body weight for a period of 45 days and cardiotoxicity was assessed. As2O3 significantly increased the tissue arsenic deposition, micronuclei frequency and creatine kinase (CK)-MB activity. There were a rise in lipid peroxidation and a decline in reduced glutathione, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase in heart tissue of arsenic-administered rats. The cardioprotective role of ω-3 fatty acid was assessed by combination treatment with As2O3. ω-3 fatty acid co-administration with As2O3 significantly alleviated these changes. In in vitro study using H9c2 cardiomyocytes, As2O3 treatment induced alterations in cell viability, lactate dehydrogenase (LDH) release, lipid peroxidation, cellular calcium levels and mitochondrial membrane potential (∆Ψm). ω-3 fatty acid co-treatment significantly increased cardiomyocyte viability, reduced LDH release, lipid peroxidation and intracellular calcium concentration and improved the ∆Ψm. These findings suggested that the ω-3 fatty acid has the potential to protect against As2O3-induced cardiotoxicity.


Assuntos
Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Óxidos/toxicidade , Animais , Trióxido de Arsênio , Arsenicais , Biomarcadores/metabolismo , Cálcio/metabolismo , Cardiotoxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Combinação de Medicamentos , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Fatores de Tempo
16.
3 Biotech ; 4(4): 425-430, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324479

RESUMO

Arsenic compounds have been used for medicinal purposes throughout history. Arsenic trioxide (As2O3) achieved dramatic remissions in patients with acute promyelocytic leukaemia. Unfortunately, the clinical usefulness of As2O3 has been limited by its toxicity. The present study was designed to investigate the toxic effects of As2O3 at its clinical concentrations. Experimental rats were administered with As2O3 2, 4 and 8 mg/kg body weight for a period of 45 days and the serum glucose, creatine kinase, lactate dehydrogenase, lipid peroxidation and antioxidant status were measured. As2O3-treated rats showed elevated serum glucose, creatine kinase and lactate dehydrogenase concentrations. Lipid peroxidation product malondialdehyde was found to be produced more in arsenic-treated rats. Reduced glutathione and glutathione-dependant antioxidant enzymes, glutathione-S-transferase and glutathione peroxidase, and the antiperoxidative enzymes, superoxide dismutase and catalase, concentrations were reduced with the As2O3 treatment. All these toxic effects were found increased with the increase in concentration of As2O3. The results of the study indicate that As2O3 produced dose-dependant toxic side effects at its clinical concentrations.

17.
Drug Chem Toxicol ; 36(2): 135-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22385158

RESUMO

The present study investigated the effect of long-term intake of aspartame, a widely used artificial sweetener, on antioxidant defense status in the rat brain. Male Wistar rats weighing 150-175 g were randomly divided into three groups as follows: The first group was given aspartame at a dose of 500 mg/kg body weight (b.w.); the second group was given aspartame at dose of 1,000 mg/kg b.w., respectively, in a total volume of 3 mL of water; and the control rats received 3 mL of distilled water. Oral intubations were done in the morning, daily for 180 days. The concentration of reduced glutathione (GSH) and the activity of glutathione reductase (GR) were significantly reduced in the brain of rats that had received the dose of 1,000 mg/kg b.w. of aspartame, whereas only a significant reduction in GSH concentration was observed in the 500-mg/kg b.w. aspartame-treated group. Histopathological examination revealed mild vascular congestion in the 1,000 mg/kg b.w. group of aspartame-treated rats. The results of this experiment indicate that long-term consumption of aspartame leads to an imbalance in the antioxidant/pro-oxidant status in the brain, mainly through the mechanism involving the glutathione-dependent system.


Assuntos
Antioxidantes/metabolismo , Aspartame/toxicidade , Encéfalo/efeitos dos fármacos , Edulcorantes/toxicidade , Animais , Aspartame/administração & dosagem , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Masculino , Ratos , Ratos Wistar , Edulcorantes/administração & dosagem , Fatores de Tempo
18.
Toxicol Mech Methods ; 22(8): 625-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22827614

RESUMO

CONTEXT: Chronic oral intake of high doses of monosodium glutamate (MSG) could be harmful to tissues and organs. Oxidative stress enhances membrane damage by lipid peroxidation and alterations of antioxidant enzymes, which affects the functional activity of organs. Antioxidant vitamins have the capacity to regulate the oxidative stress related functional and pathological processes. OBJECTIVE: In this study, the protective role of α-tocopherol against MSG-induced nephrotoxicity was analyzed. MATERIALS AND METHODS: MSG (4 g/kg) was given orally to female wistar rats for a period of 180 days. Renal function parameters (urea, uric acid, and creatinine), lipid peroxidation markers (malondialdehyde and conjugated dienes), antioxidant system (superoxide dismutase, catalase, glutathione peroxidase, glutathione transferase, and reduced glutathione), and histopathology were investigated. All tests were done in rats treated with MSG and at two different doses of α-tocopherol (100 and 200 mg/kg). RESULTS: Oral exposure of MSG significantly increased renal function markers, lipid peroxidation byproducts, and altered antioxidant system. Moreover, the kidney showed congested glomeruli, tubular swelling, capillary congestion and microhemorrhages in stromal areas of the tubules. Co-administration of MSG and α-tocopherol (200 mg/kg) significantly reduced the oxidative damage compared with MSG-treated group and also restored the normal renal function. DISCUSSION: The results indicated that oxidative stress was involved in MSG-induced functional and pathological changes in the kidney. α-tocopherol modulates the functional disorder and maintains the normal architecture of renal tissue by reducing oxidative stress. CONCLUSION: The α-tocopherol may be a potent protective agent in combating MSG-induced renal toxicity.


Assuntos
Antioxidantes/farmacologia , Aditivos Alimentares/toxicidade , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Glutamato de Sódio/toxicidade , alfa-Tocoferol/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Rim/patologia , Rim/fisiopatologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Testes de Função Renal , Ratos , Ratos Wistar
19.
J Sci Food Agric ; 92(15): 3002-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22549309

RESUMO

BACKGROUND: Chronic oral intake of high doses of monosodium glutamate (MSG) causes oxidative stress. Oxidative stress plays an important role in the development of cardiac dysfunction and injury. Supplementation with α-tocopherol protects the body against oxidative stress and its related complications. This study was proposed to examine the protective effect of α-tocopherol against MSG-induced biochemical and histological alterations in blood and cardiac tissue of rats for a period of 180 days. RESULTS: Chronic oral administration of MSG (4 g kg(-1)) caused oxidative stress that was manifested by significant increase (P < 0.05) in malondialdehyde, conjugated dienes and by the decrease in the activities of superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase and glutathione S-transferase in cardiac tissue. The significantly increased (P < 0.05) activities of aspartate transaminase, creatine phosphokinase and lactate dehydrogenase in serum suggested a cardiac functional disorder. Moreover, heart muscle fibers showed cloudy swelling, fiber separation and vascular congestion. Administration of α-tocopherol (200 mg kg(-1)) significantly (P < 0.05) attenuated the MSG-induced biochemical alterations in serum and cardiac tissue. α-Tocopherol also prevented the pathological changes in cardiac tissue when compared with the MSG-treated group. CONCLUSION: Our findings suggest that α-tocopherol may have a protective effect against MSG-induced cardiotoxicity, possibly through its antioxidant activity.


Assuntos
Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Estresse Oxidativo/efeitos dos fármacos , Glutamato de Sódio/toxicidade , alfa-Tocoferol/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Feminino , Cardiopatias/prevenção & controle , Miocárdio/química , Miocárdio/patologia , Ratos , Ratos Wistar
20.
Food Chem Toxicol ; 49(6): 1203-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21376768

RESUMO

The present study evaluates the effect of long term intake of aspartame, the artificial sweetener, on liver antioxidant system and hepatocellular injury in animal model. Eighteen adult male Wistar rats, weighing 150-175 g, were randomly divided into three groups as follows: first group was given aspartame dissolved in water in a dose of 500 mg/kg b.wt.; the second group was given a dose of 1000 mg/kg b.wt.; and controls were given water freely. Rats that had received aspartame (1000 mg/kg b.wt.) in the drinking water for 180 days showed a significant increase in activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT). The concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx), and glutathione reductase (GR) were significantly reduced in the liver of rats that had received aspartame (1000 mg/kg b.wt.). Glutathione was significantly decreased in both the experimental groups. Histopathological examination revealed leukocyte infiltration in aspartame-treated rats (1000 mg/kg b.wt.). It can be concluded from these observations that long term consumption of aspartame leads to hepatocellular injury and alterations in liver antioxidant status mainly through glutathione dependent system.


Assuntos
Aspartame/toxicidade , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Edulcorantes/toxicidade , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Abastecimento de Água , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...