Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(10): 1835-1850, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788373

RESUMO

Antibody-drug conjugates consist of potent small-molecule payloads linked to a targeting antibody. Payloads must possess a viable functional group by which a linker for conjugation can be attached. Linker-attachment options remain limited for the connection to payloads via hydroxyl groups. A releasing group based on 2-aminopyridine was developed to enable stable attachment of para-aminobenzyl carbamate (PABC) linkers to the C21-hydroxyl group of budesonide, a glucocorticoid receptor agonist. Payload release involves a cascade of two self-immolative events that are initiated by the protease-mediated cleavage of the dipeptide-PABC bond. Budesonide release rates were determined for a series of payload-linker intermediates in buffered solution at pH 7.4 and 5.4, leading to the identification of 2-aminopyridine as the preferred releasing group. Addition of a poly(ethylene glycol) group improved linker hydrophilicity, thereby providing CD19-budesonide ADCs with suitable properties. ADC23 demonstrated targeted delivery of budesonide to CD19-expressing cells and inhibited B-cell activation in mice.


Assuntos
Imunoconjugados , Camundongos , Animais , Imunoconjugados/química , Carbamatos/química , Budesonida
3.
Inorg Chem ; 47(14): 6203-11, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18576611

RESUMO

Nitroaromatics and nitroalkanes quench the fluorescence of Zn(Salophen) (H2Salophen = N,N'-phenylene-bis-(3,5-di- tert-butylsalicylideneimine); ZnL(R)) complexes. A structurally related family of ZnL(R) complexes (R = OMe, di-tBu, tBu, Cl, NO2) were prepared, and the mechanisms of fluorescence quenching by nitroaromatics were studied by a combined kinetics and spectroscopic approach. The fluorescent quantum yields for ZnL(R) were generally high (Phi approximately 0.3) with sub-nanosecond fluorescence lifetimes. The fluorescence of ZnL(R) was quenched by nitroaromatic compounds by a mixture of static and dynamic pathways, reflecting the ZnL(R) ligand bulk and reduction potential. Steady-state Stern-Volmer plots were curved for ZnL(R) with less-bulky substituents (R = OMe, NO2), suggesting that both static and dynamic pathways were important for quenching. Transient Stern-Volmer data indicated that the dynamic pathway dominated quenching for ZnL(R) with bulky substituents (R = tBu, DtBu). The quenching rate constants with varied nitroaromatics (ArNO2) followed the driving force dependence predicted for bimolecular electron transfer: ZnL* + ArNO2 --> ZnL(+) + ArNO2(-). A treatment of the diffusion-corrected quenching rates with Marcus theory yielded a modest reorganization energy (lambda = 25 kcal/mol), and a small self-exchange reorganization energy for ZnL*/ZnL(+) (ca. 20 kcal/mol) was estimated from the Marcus cross-relation, suggesting that metal phenoxyls may be robust biological redox cofactors. Electronic structure calculations indicated very small changes in bond distances for the ZnL --> ZnL(+) oxidation, suggesting that solvation was the dominant contributor to the observed reorganization energy. These mechanistic insights provide information that will be helpful to further develop ZnL(R) as sensors, as well as for potential photoinduced charge transfer chemistry.


Assuntos
Compostos de Nitrogênio/química , Compostos Organometálicos/química , Zinco/química , Substâncias Explosivas/química , Modelos Moleculares , Estrutura Molecular
4.
Inorg Chem ; 46(11): 4422-9, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-17472370

RESUMO

Fluorescent sensors for the detection of chemical explosives are in great demand. It is shown herein that the fluorescence of ZnL* (H2L=N,N'-phenylene-bis-(3,5-di-tert-butylsalicylideneimine)) is quenched in solution by nitroaromatics and 2,3-dimethyl-2,3-dinitrobutane (DMNB), chemical signatures of explosives. The relationship between the structure and fluorescence of ZnL is explored, and crystal structures of three forms of ZnL(base), (base=ethanol, tetrahydrofuran, pyridine) are reported, with the base=ethanol structure exhibiting a four-centered hydrogen bonding array. Solution structures are monitored by 1H NMR and molecular weight determination, revealing a dimeric structure in poor donor solvents which converts to a monomeric structure in the presence of good donor solvents or added Lewis bases to form five-coordinate ZnL(base). Fluorescence wavelengths and quantum yields in solution are nearly insensitive to monomer-dimer interconversion, as well as to the identity of the Lewis base; in contrast, the emission wavelength in the solid state varies for different ZnL(base) due to pi-stacking. Nitroaromatics and DMNB are moderately efficient quenchers of ZnL*, with Stern-Volmer constants KSV=2-49 M-1 in acetonitrile solution.


Assuntos
Butanos/química , Compostos de Nitrogênio/química , Salicilatos/química , Compostos de Zinco/química , Cristalografia por Raios X , Eletroquímica , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Espectrometria de Fluorescência , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...