Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(10): 106401, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518324

RESUMO

The Rashba parameter α_{R} is usually assumed to scale linearly with the amplitude of polar displacements by construction of the spin-orbit interaction. On the basis of first-principles simulations, ferroelectric phases of SrTiO_{3} reached under epitaxial compressive strain are characterized by (i) large Rashba effects at the bottom of the conduction band near the paraelectric-ferroelectric boundary and (ii) an unexpected suppression of the phenomena when the amplitude of polar displacements increases. This peculiar behavior is ascribed to the inverse dependence of the Rashba parameter with the crystal field Δ_{CF} induced by the polar displacements that alleviates the degeneracy of Ti t_{2g} states and annihilates the Rashba effects. Although α_{R} has intrinsically a linear dependance on polar displacements, the latter becomes antagonist to Rashba phenomena at large polar mode amplitude. Thus, the Rashba coefficient may be bound to an upper value.

2.
Dalton Trans ; 52(48): 18362-18379, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008949

RESUMO

Four new metallophosphonates with the chemical formulae M(H2O)PO3-S2C12H7 (M = Cu, Zn) and M(H2O)2(PO2OH-S2C12H7)2 (M = Mn, Co) were synthesized using a hydrothermal route from the original bent rigid thianthrene-2-ylphosphonic acid (TPA). This organic precursor crystallizes in a non-centrosymmetric space group P212121 and presents a unique bent geometry due to the presence of two sulfur atoms in its rigid platform architecture. Obtained as single crystal and polycrystalline powders, the structures of the four hybrid materials were solved using X-ray diffraction on single crystals in a monoclinic P21/c space group. These compounds adopt a lamellar structure consisting of one inorganic subnetwork alternating with a 'sawtooth' double organic -S2C12H7 subnetwork. The inorganic layers of these compounds are made of (PO3C) or partially deprotonated (PO2OHC) tetrahedra connected by the apices to isolated ZnO3(H2O) tetrahedra, Cu2O6(H2O)2 copper dimers and cobalt and manganese MO4(H2O)2 octahedra, where the latter two exhibit an isotype structure. Thermogravimetric analysis was performed to confirm the amount of water molecules present in the formula, to track the dehydration process of the structures, and to evaluate their thermal stability. The magnetic properties of the copper, cobalt, and manganese-based materials were investigated from 2 K to 300 K by using a SQUID magnetometer revealing dominant antiferromagnetic interactions with Weiss temperatures of -8.0, -10, and -1 K, respectively. These magnetic behaviors were further corroborated by first-principles simulations based on Density Functional Theory (DFT). Finally, the absorption and photoluminescence properties of both the ligand and hybrid materials were investigated, revealing diverse excitation and recombination mechanisms. The organic moiety based on thianthrene significantly influenced the absorption and emission, with additional peaks attributed to transition metals. Singlet and triplet states recombination were observed, accompanied by an unidentified quenching mechanism affecting the triplet state lifetime.

3.
Nat Commun ; 10(1): 1658, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971698

RESUMO

With their broad range of properties, ABO3 transition metal perovskite oxides have long served as a platform for device applications and as a testing bed for different condensed matter theories. Their insulating character and structural distortions are often ascribed to dynamical electronic correlations within a universal, symmetry-conserving paradigm. This view restricts predictive theory to complex computational schemes, going beyond density functional theory (DFT). Here, we show that, if one allows symmetry-breaking energy-lowering crystal symmetry reductions and electronic instabilities within DFT, one successfully and systematically recovers the trends in the observed band gaps, magnetic moments, type of magnetic and crystallographic ground state, bond disproportionation and ligand hole effects, Mott vs. charge transfer insulator behaviors, and the amplitude of structural deformation modes including Jahn-Teller in low temperature spin-ordered and high temperature disordered paramagnetic phases. We then provide a classification of the four mechanisms of gap formation and establish DFT as a reliable base platform to study the ground state properties in complex oxides.

4.
Phys Rev Lett ; 122(11): 116401, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951339

RESUMO

In transition-metal perovskites (ABO_{3}) most physical properties are tunable by structural parameters such as the rotation of the BO_{6} octahedra. Examples include the Néel temperature of orthoferrites, the conductivity of mixed-valence manganites, or the band gap of rare-earth scandates. Since oxides often hold large internal electric dipoles and can accommodate heavy elements, they also emerge as prime candidates to display Rashba spin-orbit coupling, through which charge and spin currents may be efficiently interconverted. However, despite a few experimental reports in SrTiO_{3}-based interface systems, the Rashba interaction has been little studied in these materials, and its interplay with structural distortions remains unknown. In this Letter, we identify a bismuth-based perovskite with a large, electrically switchable Rashba interaction whose amplitude can be controlled by both the ferroelectric polarization and the breathing mode of oxygen octahedra. This particular structural parameter arises from the strongly covalent nature of the Bi-O bonds, reminiscent of the situation in perovskite nickelates. Our results not only provide novel strategies to craft agile spin-charge converters but also highlight the relevance of covalence as a powerful handle to design emerging properties in complex oxides.

5.
Adv Mater ; 29(22)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370578

RESUMO

Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity. Recently, it has been proposed that additional to typical fields, the chemical potential that controls the concentration of ion vacancies in these systems may reveal an efficient alternative parameter to further tune their properties and achieve new functionalities. In this study, concretizing this proposal, the authors show that the control of the content of oxygen vacancies in perovskite thin films can indeed be used to tune their magnetic properties. Growing PrVO3 thin films epitaxially on an SrTiO3 substrate, the authors reveal a concrete pathway to achieve this effect. The authors demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percent. In turn, this strain affects the exchange interactions, producing a nontrivial evolution of Néel temperature in a range of 30 K.

6.
Phys Rev Lett ; 116(5): 057602, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894734

RESUMO

The Jahn-Teller distortion, by its very nature, is often at the heart of the various electronic properties displayed by perovskites and related materials. Despite the Jahn-Teller mode being nonpolar, we devise and demonstrate, in the present Letter, an electric field control of Jahn-Teller distortions in bulk perovskites. The electric field control is enabled through an anharmonic lattice mode coupling between the Jahn-Teller distortion and a polar mode. We confirm this coupling and quantify it through first-principles calculations. The coupling will always exist within the Pb2_{1}m space group, which is found to be the favored ground state for various perovskites under sufficient tensile epitaxial strain. Intriguingly, the calculations reveal that this mechanism is not only restricted to Jahn-Teller active systems, promising a general route to tune or induce novel electronic functionality in perovskites as a whole.

7.
Sci Rep ; 5: 15364, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482414

RESUMO

Perovskite oxides are already widely used in industry and have huge potential for novel device applications thanks to the rich physical behaviour displayed in these materials. The key to the functional electronic properties exhibited by perovskites is often the so-called Jahn-Teller distortion. For applications, an electrical control of the Jahn-Teller distortions, which is so far out of reach, would therefore be highly desirable. Based on universal symmetry arguments, we determine new lattice mode couplings that can provide exactly this paradigm, and exemplify the effect from first-principles calculations. The proposed mechanism is completely general, however for illustrative purposes, we demonstrate the concept on vanadium based perovskites where we reveal an unprecedented orbital ordering and Jahn-Teller induced ferroelectricity. Thanks to the intimate coupling between Jahn-Teller distortions and electronic degrees of freedom, the electric field control of Jahn-Teller distortions is of general relevance and may find broad interest in various functional devices.

8.
J Phys Condens Matter ; 25(41): 416002, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24025352

RESUMO

We performed magnetic and ferroelectric measurements, associated with Landau theory and symmetry analysis, in order to clarify the situation of the YMnO3 system, a classical example of type I multiferroics. We found that the only magnetic group compatible with all experimental data (neutron scattering, magnetization, polarization, dielectric constant, second harmonic generation) is the P6'(3) group. In this group a small ferromagnetic component along c is induced by the Dzyaloshinskii-Moriya interaction, and observed here in magnetization measurements. We found that the ferromagnetic and antiferromagnetic components can only be switched simultaneously, while the magnetic orders are functions of the polarization square and therefore insensitive to its sign.


Assuntos
Campos Magnéticos , Compostos de Manganês/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...