Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049326

RESUMO

Nitrogen-doped graphene is currently recognized as one of the most promising catalysts for the oxygen reduction reaction (ORR). It has been demonstrated to act as a metal-free electrode with good electrocatalytic activity and long-term operation stability, excellent for the ORR in proton exchange membrane fuel cells (PEMFCs). As a consequence, intensive research has been dedicated to the investigation of this catalyst through varying the methodologies for the synthesis, characterization, and technologies improvement. A simple, scalable, single-step synthesis method for nitrogen-doped graphene oxide preparation was adopted in this paper. The physical and chemical properties of various materials obtained from different precursors have been evaluated and compared, leading to the conclusion that ammonia allows for a higher resulting nitrogen concentration, due to its high vapor pressure, which facilitates the functionalization reaction of graphene oxide. Electrochemical measurements indicated that the presence of nitrogen-doped oxide can effectively enhance the electrocatalytic activity and stability for ORR, making it a viable candidate for practical application as a PEMFC cathode electrode.

2.
Sci Rep ; 12(1): 880, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042928

RESUMO

Heavy metal pollution of river freshwater environments currently raises significant concerns due to the toxic effects and the fact that heavy metal behavior is not fully understood. This study assessed the contamination level of eight heavy metals and trace elements (Cr, Ni, Cu, Zn, As, Pb, Cd, and Hg) in the surface sediments of 19 sites in 2018 during four periods (March, May, June, and October) in Olt River sediments. Multivariate statistical techniques were used, namely, one-way ANOVA, person product-moment correlation analysis, principal component analysis, hierarchical cluster analysis, and sediment quality indicators such as the contamination factor and pollution load index. The results demonstrated higher contents of Ni, Cu, Zn, As, Pb, Cd, and Hg, with values that were over 2.46, 4.40, 1.15, 8.28, 1.10, 1.53, and 3.71 times more, respectively, compared with the national quality standards for sediments. We observed a positive significant statistical correlation (p < 0.001) in March between elevation and Pb, Ni, Cu, Cr, and Zn and a negative correlation between Pb and elevation (p = 0.08). Intermetal associations were observed only in March, indicating a relationship with river discharge from spring. The PCA sustained mainly anthropogenic sources of heavy metals, which were also identified through correlation and cluster analyses. We noted significant differences between the Cr and Pb population means and variances (p < 0.001) for the data measured in March, May, June, and October. The contamination factor indicated that the pollution level of heavy metals was high and significant for As at 15 of the 19 sites. The pollution load index showed that over 89% of the sites were polluted by metals to various degrees during the four periods investigated. Our results improve the knowledge of anthropogenic versus natural origins of heavy metals in river surface sediments, which is extremely important in assessing environmental and human health risks and beneficial for decision-maker outcomes for national freshwater management plans.

3.
Materials (Basel) ; 14(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34501044

RESUMO

Three-dimensional graphene foam (3D-GrFoam) is a highly porous structure and sustained lattice formed by graphene layers with sp2 and sp3 hybridized carbon. In this work, chemical vapor deposition (CVD)-grown 3D-GrFoam was nitrogen-doped and platinum functionalized using hydrothermal treatment with different reducing agents (i.e., urea, hydrazine, ammonia, and dihydrogen hexachloroplatinate (IV) hydrate, respectively). X-ray photoelectron spectroscopy (XPS) survey showed that the most electrochemically active nitrogen-doped sample (GrFoam3N) contained 1.8 at % of N, and it exhibited a 172 mV dec-1 Tafel plot associated with the Volmer-Heyrovsky hydrogen evolution (HER) mechanism in 0.1 M KOH. By the hydrothermal process, 0.2 at % of platinum was anchored to the graphene foam surface, and the resultant sample of GrFoamPt yielded a value of 80 mV dec-1 Tafel associated with the Volmer-Tafel HER mechanism. Furthermore, Raman and infrared spectroscopy analysis, as well as scanning electron microscopy (SEM) were carried out to understand the structure of the samples.

4.
Materials (Basel) ; 12(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349536

RESUMO

Perovskite LaCoO 3 materials have various applications, from selective permeable membranes and gas sensing devices to water splitting applications. However, the intrinsic electrical resistivity of the perovskite limits the applicative potential. To overcome that, Ag powder was used with LaCoO 3 to obtain porous composite electrodes with enhanced conductivities. For that, a series of composite Ag-LaCoO 3 powders were prepared into pellets and pre-sintered at various temperatures up to 1000 ∘ C. Their structural properties and morphology were investigated by X-ray diffraction and scanning electron microscopy. The electronic transport of compacted specimens was studied by impedance spectroscopy. The results indicate that the presence of Ag acts as pre-sintering additive to obtain porous electrodes, with porosity values as high as 40% at 50 vol. % Ag. Moreover, the overall electrical resistivity of the composite electrodes varied well over four orders of magnitude. The results are discussed within the generalized Bruggeman theory for effective media comprising arbitrarily shaped metallic and semiconducting inclusions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...