Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38636487

RESUMO

Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled cell division processes in the last century, many studies are still being carried out to develop drugs with higher anticancer efficacy and lower level of side effects. Herein, we designed, synthesized, and characterized six novel coumarin-triazole hybrids, and evaluated for anticancer activity of the one with the highest potential against the breast cancer cell line, MCF-7 and human cervical cancer cell line, human cervical adenocarcinoma (HeLa). Compound21which was the coumarin derivative including phenyl substituent with the lowest IC50 value displayed the highest cytotoxicity against the studied cancer cell line. Furthermore, the potential use of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) prepared by the emulsifying solvent evaporation method as a platform for a drug delivery system was studied on a selected coumarin derivative21. This coumarin derivative-loaded PLGA NPs were produced with an average size of 225.90 ± 2.96 nm, -16.90 ± 0.85 mV zeta potential, and 4.12 ± 0.90% drug loading capacity. The obtained21-loaded PLGA nanoparticles were analyzed spectroscopically and microscopically with FT-IR, UV-vis, and scanning electron microscopy as well as thermogravimetric analysis, Raman, and x-ray diffraction. Thein vitrorelease of21from the nanoparticles exhibited a controlled release profile just over one month following a burst release in the initial six hours and in addition to this a total release ratio of %50 and %85 were obtained at pH 7.4 and 5.5, respectively.21-loaded PLGA nanoparticles displayed remarkably effective anticancer activity than21. The IC50 values were determined as IC50(21-loaded PLGA nanoparticles): 0.42 ± 0.01 mg ml-1and IC50(free21molecule): 5.74 ± 3.82 mg ml-1against MCF-7 cells, and as IC50(21-loaded PLGA nanoparticles): 0.77 ± 0.12 mg ml-1and IC50(free21molecule): 1.32 ± 0.31 mg ml-1against HeLa cells after the incubation period of 24 h. Our findings indicated that triazole-substituted coumarins may be used as an anticancer agent by integrating them into a polymeric drug delivery system providing improved drug loading and effective controlled drug release.


Assuntos
Antineoplásicos , Cumarínicos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Triazóis , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Triazóis/química , Triazóis/farmacologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Células HeLa , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos , Ácido Láctico/química , Portadores de Fármacos/química , Ácido Poliglicólico/química , Tamanho da Partícula , Sistemas de Liberação de Medicamentos/métodos
2.
Nanotechnology ; 34(14)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36623313

RESUMO

Iron oxide nanoparticles have been one of the most widely used nanomaterials in biomedical applications. However, the incomplete understanding of the toxicity mechanisms limits their use in diagnosis and treatment processes. Many parameters are associated with their toxicity such as size, surface modification, solubility, concentration and immunogenicity. Further research needs to be done to address toxicity-related concerns and to increase its effectiveness in various applications. Herein, colloidally stable nanoparticles were prepared by coating magnetic iron oxide nanoparticles (MIONPs) with protocatechuic acid (PCA) which served as a stabilizer and a linkage for a further functional layer. A new perfusion agent with magnetic imaging capability was produced by the adsorption of biocompatible passivating agent macro-aggregated albumin (MAA) on the PCA-coated MIONPs. PCA-coated MIONPs were investigated using infrared spectroscopy, thermogravimetric analysis and dynamic light scattering while adsorption of MAA was analysed by transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray diffraction methods. Magnetic measurements of samples indicated that all samples showed superparamagnetic behaviour. Cytotoxicity results revealed that the adsorption of MAA onto PCA-coated MIONPs provided an advantage by diminishing their toxicity against the L929 mouse fibroblast cell line compared to bare Fe3O4.


Assuntos
Nanopartículas de Magnetita , Camundongos , Animais , Nanopartículas de Magnetita/química , Medicina de Precisão , Albumina Sérica , Nanopartículas Magnéticas de Óxido de Ferro , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Férricos/química
3.
ChemistryOpen ; 9(11): 1181-1189, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33235824

RESUMO

Induced pluripotent stem cells (IPSC) are preferred as an alternative source for regenerative medicine, disease modeling, and drug screening due to their unique properties. As seen from the previous studies in the literature, most of the vector systems to transfer reprogramming factors are viral-based and have some well-known limitations. This study aims to develop a non-viral vector system for the transfection of reprogramming factors. Cationic stearamide lipid nanoparticles (CSLN) were prepared via the solvent diffusion method. The obtained CSLNs were used for the delivery of plasmid DNA (pDNA) encoding Oct3/4, Sox2, Klf4, and GFP to fibroblast cell lines. The optimization studies, for zeta potential and particle size of the conjugate, was performed to achieve high cell viability. CSLN63 with 36.5±0.06 mV zeta potential and 173.6±13.91 nm size was used for the transfection of Fibroblast cells. The transfection efficiency was observed by following GFP expression and was found as 70 %±0.11. The expression of the Oct4, Sox2, Klf4 was determined by RT-qPCR; an increase was observed after the 12th cycle in Klf4 (Ct averages: 13,41), Sox2 (Ct averages; 12,4), Oct4 (Ct average; 13,77). The tendency of colonization was observed. The upregulation efficiency of Oct4 and SSEA-1 with CSLN and another non-viral vector designed for the transportation of Yamanaka factors developed in our lab previously were compared with flow cytometer analysis.


Assuntos
DNA/genética , Portadores de Fármacos/química , Nanopartículas/química , Plasmídeos/genética , Ácidos Esteáricos/química , Animais , Linhagem Celular , Reprogramação Celular/genética , Portadores de Fármacos/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Nanopartículas/toxicidade , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Tamanho da Partícula , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Ácidos Esteáricos/toxicidade , Transfecção/métodos
4.
J Microencapsul ; 37(4): 332-340, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32223347

RESUMO

Aim: In this study, we aimed to develop a polycationic non-viral carrier for the delivery of the reprogramming factors to the L929 fibroblast cell.Methods: We have prepared (3-hydroxybutyrate-co-3-hydroxyhexanoate) PHBHHx-based nanoparticles with the solvent diffusion method. Cytotoxicity of PXNs was determined via MTT assay. Transfection efficiency was evaluated via screening GFP expression by fluorescence microscopy. The expression of reprogramming factors (Oct4, Klf4, and Sox2) was determined by RT-qPCR.Results: PXNs with 32.9 ± 0.41 mV zeta potential and 177.6 ± 0.80 nm size were used for transfection of L929 Fbroblast cells. The percentage of cell viability of PXN were between 91.8%(±2.9) and 42.1%(±1.3). The transfection efficiency was found as 71.6%(±3,5). According to RT-qPCR data, the rate of transfection factors was significantly increased after the 11th cycle compared to non-transfected cells. Based on these results, it can be concluded that newly developed PXN is thought to be an effective tool for reprogramming cells.


Assuntos
Caproatos/química , Nanopartículas/química , Reprogramação Celular , Expressão Gênica , Proteínas de Fluorescência Verde , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Tamanho da Partícula , Paxilina/genética , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXB1/genética , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...