Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 60(1): 3-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26292662

RESUMO

The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of 'hot' spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment.


Assuntos
Amidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Melatonina/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Associadas a rho/metabolismo
2.
Oxid Med Cell Longev ; 2015: 730683, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861413

RESUMO

Stem/progenitor cells from multiple tissues have been isolated based on enhanced activity of cytosolic aldehyde dehydrogenase (ALDH) enzyme. ALDH activity has emerged as a reliable marker for stem/progenitor cells, such that ALDH(bright/high) cells from multiple tissues have been shown to possess enhanced stemness properties (self-renewal and multipotency). So far though, not much is known about ALDH activity in specific fetal organs. In this study, we sought to analyze the presence and activity of the ALDH enzyme in the stem cell antigen-1-positive (Sca-1+) cells of fetal human heart. Biochemical assays showed that a subpopulation of Sca-1+ cells (15%) possess significantly high ALDH1 activity. This subpopulation showed increased expression of self-renewal markers compared to the ALDH(low) fraction. The ALDH(high) fraction also exhibited significant increase in proliferation and pro-survival gene expression. In addition, only the ALDH(high) and not the ALDH(low) fraction could give rise to all the cell types of the original population, demonstrating multipotency. ALDH(high) cells showed increased resistance against aldehyde challenge compared to ALDH(low) cells. These results indicate that ALDH(high) subpopulation of the cultured human fetal cells has enhanced self-renewal, multipotency, high proliferation, and survival, indicating that this might represent a primitive stem cell population within the fetal human heart.


Assuntos
Aldeído Desidrogenase/metabolismo , Coração Fetal/citologia , Células-Tronco/metabolismo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Proliferação de Células , Citometria de Fluxo , Expressão Gênica , Humanos , Separação Imunomagnética , Antígeno Ki-67/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Retinal Desidrogenase , Células-Tronco/citologia
3.
PLoS One ; 9(12): e116247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25549350

RESUMO

A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2), starting treatments on day 0, or delayed groups (3 and 4) on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg) treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05). Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05) compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.


Assuntos
Amidinas/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Amidinas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Artigo em Inglês | MEDLINE | ID: mdl-25599002

RESUMO

Umbilical cord blood (UCB) derived multipotent stem cells are capable of giving rise hematopoietic, epithelial, endothelial and neural progenitor cells. Thus suggested to significantly improve graft-versus-host disease and represent the distinctive therapeutic option for several malignant and non-malignant diseases. Recent advances in strategies to isolate, expand and shorten the timing of UCB stem cells engraftment have tremendously improved the efficacy of transplantations. Nervous system has limited regenerative potential in disease conditions such as cancer, neurodegeneration, stroke, and several neural injuries. This review focuses on application of UCB derived stem/progenitor cells in aforementioned pathological conditions. We have discussed the possible attempts to make use of UCB therapies to generate neural cells and tissues with developmental and functional similarities to neuronal cells. In addition, emerging applications of UCB derived AC133+ (CD133+) endothelial progenitor cells (EPCs) as imaging probe, regenerative agent, and gene delivery vehicle are mentioned that will further improve the understanding of use of UCB cells in therapeutic modalities. However, safe and effective protocols for cell transplantations are still required for therapeutic efficacy.

5.
Stem Cells Transl Med ; 2(9): 703-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23934909

RESUMO

Endothelial progenitor cells (EPCs) hold enormous therapeutic potential for ischemic vascular diseases. Previous studies have indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improve functional recovery in stroke models. Here, we examined the effect of hUCB AC133+ EPCs on stroke development and resolution in a middle cerebral artery occlusion (MCAo) rat model. Since the success of cell therapies strongly depends on the ability to monitor in vivo the migration of transplanted cells, we also assessed the capacity of magnetic resonance imaging (MRI) to track in vivo the magnetically labeled cells that were administered. Animals were subjected to transient MCAo and 24 hours later injected intravenously with 10(7) hUCB AC133+ EPCs. MRI performed at days 1, 7, and 14 after the insult showed accumulation of transplanted cells in stroke-affected hemispheres and revealed that stroke volume decreased at a significantly higher rate in cell-treated animals. Immunohistochemistry analysis of brain tissues localized the administered cells in the stroke-affected hemispheres only and indicated that these cells may have significantly affected the magnitude of endogenous proliferation, angiogenesis, and neurogenesis. We conclude that transplanted cells selectively migrated to the ischemic brain parenchyma, where they exerted a therapeutic effect on the extent of tissue damage, regeneration, and time course of stroke resolution.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Células Endoteliais/citologia , Infarto da Artéria Cerebral Média/terapia , Células-Tronco/citologia , Acidente Vascular Cerebral/terapia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Humanos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Injeções Intravenosas , Imageamento por Ressonância Magnética , Masculino , Peptídeos/metabolismo , Ratos , Ratos Wistar , Células-Tronco/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Transplante Heterólogo
6.
BMC Med Imaging ; 13: 17, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758888

RESUMO

BACKGROUND: A major challenge in the development of cell based therapies for glioma is to deliver optimal number of cells (therapeutic dose) to the tumor. Imaging tools such as magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has been used in cell tracking and/or biodistribution studies. In this study, we evaluate the dynamic biodistribution of systemic injected labeled cells [human cord blood derived endothelial progenitor cells (EPCs) and cytotoxic T-cells (CTLs)] in rat glioma model with in vivo SPECT imaging. METHODS: Human cord blood EPCs, T-cells and CD14⁺ cells (monocytes/dendritic cells) were isolated using the MidiMACS system. CD14⁺ cells were converted to dendritic cells (DC) and also primed with U251 tumor cell line lysate. T-cells were co-cultured with irradiated primed DCs at 10:1 ratio to make CTLs. Both EPCs and CTLs were labeled with In-111-oxine at 37°C in serum free DMEM media. Glioma bearing animals were randomly assigned into three groups. In-111 labeled cells or In-111 oxine alone were injected through tail vein and SPECT imaging was performed on day 0, 1, and 3. In-111 oxine activity in various organs and tumor area was determined. Histochemical analysis was performed to further confirm the migration and homing of injected cells at the tumor site. RESULTS: EPCs and CTLs showed an In-111 labeling efficiency of 87.06 ± 7.75% and 70.8 ± 12.9% respectively. Initially cell migration was observed in lung following inravenous administration of In-111 labeled cells and decreased on day 1 and 3, which indicate re-distribution of labeled cells from lung to other organs. Relatively higher In-111 oxine activity was observed in tumor areas at 24 hours in animals received In-111 labeled cells (EPCs or CTLs). Histiological analysis revealed iron positive cells in and around the tumor area in animals that received labeled cells (CTLs and EPCs). CONCLUSION: We observed differential biodistribution of In-111-oxine labeled EPCs and CTLs in different organs and intracranial glioma. This study indicates In-111 oxine based SPECT imaging is an effective tool to study the biodistribution of therapeutically important cells.


Assuntos
Glioma/diagnóstico por imagem , Glioma/cirurgia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/diagnóstico por imagem , Linfócitos T Citotóxicos/diagnóstico por imagem , Linfócitos T Citotóxicos/transplante , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Humanos , Ratos , Ratos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
7.
Biotechnol Res Int ; 2013: 431315, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23476790

RESUMO

In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle.

8.
World J Clin Oncol ; 4(4): 91-101, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-24926429

RESUMO

AIM: To determine whether endothelial progenitor cells (EPCs) can be used as delivery vehicle for adenoviral vectors and imaging probes for gene therapy in glioblastoma. METHODS: To use cord blood derived EPCs as delivery vehicle for adenoviral vectors and imaging probes for glioma gene therapy, a rat model of human glioma was made by implanting U251 cells orthotopically. EPCs were transfected with an adenovirus (AD5/carrying hNIS gene) and labeled with iron oxide and inoculated them directly into the tumor 14 d following implantation of U251 cells. Magnetic resonance imaging (MRI) was used to in vivo track the migration of EPCs in the tumor. The expression of gene products was determined by in vivo Tc-99m single photon emission computed tomography (SPECT). The findings were validated with immunohistochemistry (IHC). RESULTS: EPCs were successfully transfected with the adenoviral vectors carrying hNIS which was proved by significantly (P < 0.05) higher uptake of Tc-99m in transfected cells. Viability of EPCs following transfection and iron labeling was not altered. In vivo imaging showed the presence of iron positive cells and the expression of transgene (hNIS) product on MRI and SPECT, respectively, all over the tumors following administration of transfected and iron labeled EPCs in the tumors. IHC confirmed the distribution of EPC around the tumor away from the injection site and also showed transgene expression in the tumor. The results indicated the EPCs' ability to deliver adenoviral vectors into the glioma upon intratumor injection. CONCLUSION: EPCs can be used as vehicle to deliver adenoviral vector to glioma and also act as imaging probe at the same time.

9.
PLoS One ; 7(5): e37577, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662174

RESUMO

BACKGROUND: Endothelial progenitors cells (EPCs) are important for the development of cell therapies for various diseases. However, the major obstacles in developing such therapies are low quantities of EPCs that can be generated from the patient and the lack of adequate non-invasive imaging approach for in vivo monitoring of transplanted cells. The objective of this project was to determine the ability of cord blood (CB) AC133+ EPCs to differentiate, in vitro and in vivo, toward mature endothelial cells (ECs) after long term in vitro expansion and cryopreservation and to use magnetic resonance imaging (MRI) to assess the in vivo migratory potential of ex vivo expanded and cryopreserved CB AC133+ EPCs in an orthotopic glioma rat model. MATERIALS, METHODS AND RESULTS: The primary CB AC133+ EPC culture contained mainly EPCs and long term in vitro conditions facilitated the maintenance of these cells in a state of commitment toward endothelial lineage. At days 15-20 and 25-30 of the primary culture, the cells were labeled with FePro and cryopreserved for a few weeks. Cryopreserved cells were thawed and in vitro differentiated or i.v. administered to glioma bearing rats. Different groups of rats also received long-term cultured, magnetically labeled fresh EPCs and both groups of animals underwent MRI 7 days after i.v. administration of EPCs. Fluorescent microscopy showed that in vitro differentiation of EPCs was not affected by FePro labeling and cryopreservation. MRI analysis demonstrated that in vivo accumulation of previously cryopreserved transplanted cells resulted in significantly higher R2 and R2* values indicating a higher rate of migration and incorporation into tumor neovascularization of previously cryopreserved CB AC133+ EPCs to glioma sites, compared to non-cryopreserved cells. CONCLUSION: Magnetically labeled CB EPCs can be in vitro expanded and cryopreserved for future use as MRI probes for monitoring the migration and incorporation to the sites of neovascularization.


Assuntos
Antígenos CD/metabolismo , Rastreamento de Células , Células Endoteliais/citologia , Endotélio Vascular/citologia , Sangue Fetal/citologia , Glicoproteínas/metabolismo , Imageamento por Ressonância Magnética , Peptídeos/metabolismo , Células-Tronco/citologia , Antígeno AC133 , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Meios de Contraste , Criopreservação , Dextranos , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Glioma , Humanos , Nanopartículas de Magnetita , Neovascularização Fisiológica , Cultura Primária de Células , Protaminas , Ratos , Ratos Nus , Coloração e Rotulagem , Transplante de Células-Tronco , Células-Tronco/metabolismo
10.
Nat Med ; 18(3): 463-7, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366951

RESUMO

We report on a new straightforward magnetic cell-labeling approach that combines three US Food and Drug Administration (FDA)-approved drugs--ferumoxytol, heparin and protamine--in serum-free medium to form self-assembling nanocomplexes that effectively label cells for in vivo magnetic resonance imaging (MRI). We observed that the ferumoxytol-heparin-protamine (HPF) nanocomplexes were stable in serum-free cell culture medium. HPF nanocomplexes show a threefold increase in T2 relaxivity compared to ferumoxytol. Electron microscopy showed internalized HPF in endosomes, which we confirmed by Prussian blue staining of labeled cells. There was no long-term effect or toxicity on cellular physiology or function of HPF-labeled hematopoietic stem cells, bone marrow stromal cells, neural stem cells or T cells when compared to controls. In vivo MRI detected 1,000 HPF-labeled cells implanted in rat brains. This HPF labeling method should facilitate the monitoring by MRI of infused or implanted cells in clinical trials.


Assuntos
Encéfalo/citologia , Rastreamento de Células/métodos , Óxido Ferroso-Férrico/química , Heparina/química , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/efeitos adversos , Nanopartículas de Magnetita/química , Protaminas/química , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Meios de Cultura Livres de Soro , Endossomos/ultraestrutura , Óxido Ferroso-Férrico/administração & dosagem , Óxido Ferroso-Férrico/efeitos adversos , Células-Tronco Hematopoéticas/citologia , Heparina/administração & dosagem , Heparina/efeitos adversos , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Masculino , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica , Neurônios/citologia , Protaminas/administração & dosagem , Protaminas/efeitos adversos , Radiografia , Ratos , Transplante de Células-Tronco , Células Estromais/citologia , Linfócitos T/citologia
11.
PLoS One ; 7(1): e30310, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276177

RESUMO

BACKGROUND: Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1) intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS) to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2) whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities. METHODS AND RESULTS: Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m) in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS). Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors. CONCLUSION: EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for glioma therapy as well as imaging probes.


Assuntos
Células Endoteliais/citologia , Glioma/metabolismo , Glioma/terapia , Células-Tronco/citologia , Células-Tronco/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Glioma/genética , Glicoproteínas/metabolismo , Humanos , Lentivirus/genética , Imageamento por Ressonância Magnética , Peptídeos/metabolismo , Ratos , Ratos Nus , Simportadores/genética , Simportadores/metabolismo
12.
PLoS One ; 5(2): e9173, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20161785

RESUMO

BACKGROUND: Stem cells/progenitors are central to the development of cell therapy approaches for vascular ischemic diseases. The crucial step in rescuing tissues from ischemia is improvement of vascularization that can be achieved by promoting neovascularization. Endothelial progenitor cells (EPCs) are the best candidates for developing such an approach due to their ability to self-renew, circulate and differentiate into mature endothelial cells (ECs). Studies showed that intravenously administered progenitors isolated from bone marrow, peripheral or cord blood home to ischemic sites. However, the successful clinical application of such transplantation therapy is limited by low quantities of EPCs that can be generated from patients. Hence, the ability to amplify the numbers of autologous EPCs by long term in vitro expansion while preserving their angiogenic potential is critically important for developing EPC based therapies. Therefore, the objective of this study was to evaluate the capacity of cord blood (CB)-derived AC133+ cells to differentiate, in vitro, towards functional, mature endothelial cells (ECs) after long term in vitro expansion. METHODOLOGY: We systematically characterized the properties of CB AC133+ cells over the 30 days of in vitro expansion. During 30 days of culturing, CB AC133+ cells exhibited significant growth potential that was manifested as 148-fold increase in cell numbers. Flow cytometry and immunocytochemistry demonstrated that CB AC133+ cells' expression of endothelial progenitor markers was not affected by long term in vitro culturing. After culturing under EC differentiation conditions, cells exhibited high expression of mature ECs markers, such as CD31, VEGFR-2 and von Willebrand factor, as well as the morphological changes indicative of differentiation towards mature ECs. In addition, throughout the 30 day culture cells preserved their functional capacity that was demonstrated by high uptake of DiI fluorescently conjugated-acetylated-low density lipoprotein (DiI-Ac-LDL), in vitro and in vivo migration towards chemotactic stimuli and in vitro tube formation. CONCLUSIONS: These studies demonstrate that primary CB AC133+ culture contained mainly EPCs and that long term in vitro conditions facilitated the maintenance of these cells in the state of commitment towards endothelial lineage.


Assuntos
Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco/citologia , Antígeno AC133 , Animais , Antígenos CD/análise , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Feminino , Citometria de Fluxo , Glicoproteínas/análise , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/análise , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Transplante de Células-Tronco , Células-Tronco/metabolismo , Fatores de Tempo , Transplante Heterólogo , Fator de von Willebrand/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...