Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 8382, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182720

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

2.
Sci Rep ; 8(1): 2822, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434216

RESUMO

Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.


Assuntos
Autofagia/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Humanos , Células K562 , Microscopia de Fluorescência , Interferência de RNA , RNA Interferente Pequeno , Espectrometria de Fluorescência
3.
EMBO Rep ; 15(9): 956-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25092792

RESUMO

UBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficiency, leading to globally enhanced intron retention. Defective sister chromatid cohesion is a general consequence of dysfunctional pre-mRNA splicing, resulting from the selective downregulation of the cohesion protection factor Sororin. As the UBL5 yeast orthologue, Hub1, also promotes spliceosome functions, our results show that UBL5 plays an evolutionary conserved role in pre-mRNA splicing, the integrity of which is essential for the fidelity of chromosome segregation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Proteínas do Olho/genética , Precursores de RNA/genética , Splicing de RNA/genética , Ubiquitinas/genética , Cromátides/genética , Segregação de Cromossomos/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligases/genética , Mitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética , Ubiquitinas/metabolismo
4.
Cell Cycle ; 9(2): 312-20, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20023427

RESUMO

Progression into mitosis in the presence of DNA damage leads to spindle checkpoint (SAC) dependent mitotic delays and cytokinesis failure. In Drosophila embryos, DNA damage does not delay mitotic entry but triggers Checkpoint kinase-2 (Chk2) kinase dependent delays in mitotic exit. It is unclear if damage associated mitotic delays in human cells result from kinase signaling or breaks in centromere DNA that disrupt kinetochore function and activate the SAC. We show that transgenic expression of Human Chk2 in a Drosophila chk2 mutant background restores damage induced mitotic delays during early embryogenesis. Parental HCT116 colorectal cancer cells that progress into mitosis following DNA damage, due to either G(2) checkpoint adaptation or G(2) checkpoint abrogation by caffeine or the Chk1 inhibitor UCN-01, delay in mitosis and show high rates of cytokinesis failure. Significantly, these mitotic responses are suppressed in HCT116 chk2 knockout cells, and the response is restored by transgenic expression of wild type Chk2. However, both parental and chk2(-/-)HCT116 cells arrested in G(2) for prolonged periods by DNA damage prior to release from the G(2) block do show significant mitotic delays. Chk2 thus appears to have a conserved function in control of mitotic progression following G(2)/M transition with DNA damage. However, prolonged G(2) arrest with DNA damage can trigger Chk2 independent mitotic delays that may be secondary to kinetochore disruption.


Assuntos
Dano ao DNA , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Cafeína/farmacologia , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Neoplasias Colorretais/metabolismo , Quebras de DNA de Cadeia Dupla , Drosophila/embriologia , Drosophila/metabolismo , Fase G2 , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
5.
Cell Cycle ; 8(18): 2951-63, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19713770

RESUMO

Progression through the G(2)/M transition following DNA damage is linked to cytokinesis failure and mitotic death. In four different transformed cell lines and two human embryonic stem cell lines, we find that DNA damage triggers mitotic chromatin decondensation and global phosphorylation of histone H2AX, which has been associated with apoptosis. However, extended time-lapse studies in HCT116 colorectal cancer cells indicate that death does not take place during mitosis, but 72% of cells die within 3 days of mitotic exit. By contrast, only 11% of cells in the same cultures that remained in interphase died, suggesting that progression through mitosis enhances cell death following DNA damage. These time-lapse studies also confirmed that DNA damage leads to high rates of cytokinesis failure, but showed that cells that completed cytokinesis following damage died at higher rates than cells that failed to complete division. Therefore, post-mitotic cell death is not a response to cytokinesis failure or polyploidy. We also show that post-mitotic cell death is largely independent of p53 and is only partially suppressed by the apical caspase inhibitor Z-VAD-FMK. These findings suggest that progression through mitosis following DNA damage initiates a p53- and caspase-independent cell death response that prevents propagation of genetic lesions.


Assuntos
Morte Celular/genética , Dano ao DNA , Mitose , Caspases , Linhagem Celular , Linhagem Celular Tumoral , Citocinese , Células-Tronco Embrionárias , Células HCT116 , Humanos , Cinética , Proteína Supressora de Tumor p53
6.
Curr Biol ; 17(20): 1735-45, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17935995

RESUMO

BACKGROUND: Centrosomes, the major organizers of the microtubule network in most animal cells, are composed of centrioles embedded in a web of pericentriolar material (PCM). Recruitment and stabilization of PCM on the centrosome is a centriole-dependent function. Compared to the considerable number of PCM proteins known, the molecular characterization of centrioles is still very limited. Only a few centriolar proteins have been identified so far in Drosophila, most related to centriole duplication. RESULTS: We have cloned asterless (asl) and found that it encodes a 120 kD highly coiled-coil protein that is a constitutive pancentriolar and basal body component. Loss of asl function impedes the stabilization/maintenance of PCM at the centrosome. In embryos deficient for Asl, development is arrested right after fertilization. Asl shares significant homology with Cep 152, a protein described as a component of the human centrosome for which no functional data is yet available. CONCLUSIONS: The cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.


Assuntos
Centríolos/fisiologia , Centrossomo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Genes de Insetos , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
7.
Dev Cell ; 12(3): 467-74, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336911

RESUMO

Stem cell asymmetric division requires tight control of spindle orientation. To study this key process, we have recorded Drosophila larval neural stem cells (NBs) engineered to express fluorescent reporters for microtubules, pericentriolar material (PCM), and centrioles. We have found that early in the cell cycle, the two centrosomes become unequal: one organizes an aster that stays near the apical cortex for most of the cell cycle, while the other loses PCM and microtubule-organizing activity, and moves extensively throughout the cell until shortly before mitosis when, located near the basal cortex, it recruits PCM and organizes the second mitotic aster. Upon division, the apical centrosome remains in the stem cell, while the other goes into the differentiating daughter. Apical aster maintenance requires the function of Pins. These results reveal that spindle orientation in Drosophila larval NBs is determined very early in the cell cycle, and is mediated by asymmetric centrosome function.


Assuntos
Divisão Celular/fisiologia , Centrossomo/metabolismo , Drosophila/embriologia , Sistema Nervoso/embriologia , Fuso Acromático/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Polaridade Celular/fisiologia , Células Cultivadas , Centríolos/genética , Centríolos/metabolismo , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Regulação para Baixo/fisiologia , Drosophila/citologia , Drosophila/metabolismo , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Sistema Nervoso/metabolismo , Sistema Nervoso/ultraestrutura , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Região Organizadora do Nucléolo/ultraestrutura , Fuso Acromático/ultraestrutura , Células-Tronco/ultraestrutura
8.
J Cell Biochem ; 91(5): 904-14, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15034926

RESUMO

The centrosome is the main MT organizing center in animal cells, and has traditionally been regarded as essential for organization of the bipolar spindle that facilitates chromosome segregation during mitosis. Centrosomes are associated with the poles of the mitotic spindle, and several cell types require these organelles for spindle formation. However, most plant cells and some female meiotic systems get along without this organelle, and centrosome-independent spindle assembly has now been identified within some centrosome containing cells. How can such observations, which point to mutually incompatible conclusions regarding the requirement of centrosomes in spindle formation, be interpreted? With emphasis on the functional role of centrosomes, this article summarizes the current models of spindle formation, and outlines how observations obtained from spindle assembly assays in vitro may reconcile conflicting opinions about the mechanism of spindle assembly. It is further described how Drosophila mutants are used to address the functional interrelationships between individual centrosomal proteins and spindle formation in vivo.


Assuntos
Centrossomo/fisiologia , Meiose/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Fuso Acromático/fisiologia , Animais , Ciclo Celular/fisiologia , Cromatina/fisiologia , Segregação de Cromossomos/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Modelos Biológicos , Mutação/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...