Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(21): 11911-11926, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870464

RESUMO

Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DDR-activated APA event occurs in the first intron of CDKN1A, inducing an alternate last exon-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon DNA Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high-throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform under non-stress conditions, and SPUD is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53. The RNA binding protein HuR binds to and promotes the stability of SPUD precursor RNA. SPUD induction increases p21 protein, but not mRNA levels, affecting p21 functions in cell-cycle, CDK2 expression and cell growth. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD alters their association with CDKN1A full-length in a DDR-dependent manner, promoting CDKN1A translation. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cell-cycle.


Assuntos
RNA Longo não Codificante , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Poliadenilação , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Humanos , Linhagem Celular Tumoral
2.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711808

RESUMO

Alternative Polyadenylation (APA) is an emerging mechanism for dynamic changes in gene expression. Previously, we described widespread APA occurrence in introns during the DNA damage response (DDR). Here, we show that a DNA damage activated APA event occurs in the first intron of CDKN1A , inducing an alternate last exon (ALE)-containing lncRNA. We named this lncRNA SPUD (Selective Polyadenylation Upon Damage). SPUD localizes to polysomes in the cytoplasm and is detectable as multiple isoforms in available high throughput studies. SPUD has low abundance compared to the CDKN1A full-length isoform and is induced in cancer and normal cells under a variety of DNA damaging conditions in part through p53 transcriptional activation. RNA binding protein (RBP) HuR and the transcriptional repressor CTCF regulate SPUD levels. SPUD induction increases p21 protein, but not CDKN1A full-length levels, affecting p21 functions in cell-cycle, CDK2 expression, and cell viability. Like CDKN1A full-length isoform, SPUD can bind two competitive p21 translational regulators, the inhibitor calreticulin and the activator CUGBP1; SPUD can change their association with CDKN1A full-length in a DDR-dependent manner. Together, these results show a new regulatory mechanism by which a lncRNA controls p21 expression post-transcriptionally, highlighting lncRNA relevance in DDR progression and cellcycle.

3.
Cancer Prev Res (Phila) ; 15(11): 755-766, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219239

RESUMO

Nongenetic predisposition to colorectal cancer continues to be difficult to measure precisely, hampering efforts in targeted prevention and screening. Epigenetic changes in the normal mucosa of patients with colorectal cancer can serve as a tool in predicting colorectal cancer outcomes. We identified epigenetic changes affecting the normal mucosa of patients with colorectal cancer. DNA methylation profiling on normal colon mucosa from 77 patients with colorectal cancer and 68 controls identified a distinct subgroup of normally-appearing mucosa with markedly disrupted DNA methylation at a large number of CpGs, termed as "Outlier Methylation Phenotype" (OMP) and are present in 15 of 77 patients with cancer versus 0 of 68 controls (P < 0.001). Similar findings were also seen in publicly available datasets. Comparison of normal colon mucosa transcription profiles of patients with OMP cancer with those of patients with non-OMP cancer indicates genes whose promoters are hypermethylated in the OMP patients are also transcriptionally downregulated, and that many of the genes most affected are involved in interactions between epithelial cells, the mucus layer, and the microbiome. Analysis of 16S rRNA profiles suggests that normal colon mucosa of OMPs are enriched in bacterial genera associated with colorectal cancer risk, advanced tumor stage, chronic intestinal inflammation, malignant transformation, nosocomial infections, and KRAS mutations. In conclusion, our study identifies an epigenetically distinct OMP group in the normal mucosa of patients with colorectal cancer that is characterized by a disrupted methylome, altered gene expression, and microbial dysbiosis. Prospective studies are needed to determine whether OMP could serve as a biomarker for an elevated epigenetic risk for colorectal cancer development. PREVENTION RELEVANCE: Our study identifies an epigenetically distinct OMP group in the normal mucosa of patients with colorectal cancer that is characterized by a disrupted methylome, altered gene expression, and microbial dysbiosis. Identification of OMPs in healthy controls and patients with colorectal cancer will lead to prevention and better prognosis, respectively.


Assuntos
Neoplasias Colorretais , Epigenoma , Humanos , Disbiose/complicações , Disbiose/genética , Disbiose/metabolismo , RNA Ribossômico 16S/genética , Metilação de DNA , Epigênese Genética , Mucosa Intestinal/patologia , Neoplasias Colorretais/patologia
4.
Front Mol Neurosci ; 12: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749682

RESUMO

While nuclear tau plays a role in DNA damage response (DDR) and chromosome relaxation, the mechanisms behind these functions are not fully understood. Here, we show that tau forms complex(es) with factors involved in nuclear mRNA processing such as tumor suppressor p53 and poly(A)-specific ribonuclease (PARN) deadenylase. Tau induces PARN activity in different cellular models during DDR, and this activation is further increased by p53 and inhibited by tau phosphorylation at residues implicated in neurological disorders. Tau's binding factor Pin1, a mitotic regulator overexpressed in cancer and depleted in Alzheimer's disease (AD), also plays a role in the activation of nuclear deadenylation. Tau, Pin1 and PARN target the expression of mRNAs deregulated in AD and/or cancer. Our findings identify novel biological roles of tau and toxic effects of hyperphosphorylated-tau. We propose a model in which factors involved in cancer and AD regulate gene expression by interactions with the mRNA processing machinery, affecting the transcriptome and suggesting insights into alternative mechanisms for the initiation and/or developments of these diseases.

5.
Mol Cell Biol ; 38(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180510

RESUMO

The cellular response to DNA damage is an intricate mechanism that involves the interplay among several pathways. In this study, we provide evidence of the roles of the polyadenylation factor cleavage stimulation factor 50 (CstF-50) and the ubiquitin (Ub) escort factor p97 as cofactors of BRCA1/BARD1 E3 Ub ligase, facilitating chromatin remodeling during the DNA damage response (DDR). CstF-50 and p97 formed complexes with BRCA1/BARD1, Ub, and some BRCA1/BARD1 substrates, such as RNA polymerase (RNAP) II and histones. Furthermore, CstF-50 and p97 had an additive effect on the activation of the ubiquitination of these BRCA1/BARD1 substrates during DDR. Importantly, as a result of these functional interactions, BRCA1/BARD1/CstF-50/p97 had a specific effect on the chromatin structure of genes that were differentially expressed. This study provides new insights into the roles of RNA processing, BRCA1/BARD1, the Ub pathway, and chromatin structure during DDR.


Assuntos
Adenosina Trifosfatases/genética , Proteína BRCA1/genética , Montagem e Desmontagem da Cromatina , Fator Estimulador de Clivagem/genética , Dano ao DNA , Reparo do DNA , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Adenosina Trifosfatases/metabolismo , Proteína BRCA1/metabolismo , Fator Estimulador de Clivagem/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
Dev Dyn ; 243(2): 229-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038847

RESUMO

BACKGROUND: The mammary gland is an ideal model to study the link between form and function in normal tissue. Perhaps as interesting as the cues necessary to generate this structure are the signals required to maintain its branched architecture over the lifetime of the organism, since likely these pathways are de-regulated in malignancies. Previously, we have shown that the Na(+) /H(+) exchanger 1 (NHE1), a critical regulator of intracellular pH, was necessary for mammary branching morphogenesis. Here we provide strong evidence that NHE1 function is also necessary for maintaining mammary branched architecture. RESULTS: Inhibition of NHE1 with 5-N-Methy-N-isobutyl amiloride (MIA) on branched structures resulted in a rapid (within 24 hr) and reversible loss of branched architecture that was not accompanied by any overt changes in cell proliferation or cell death. NHE1 inhibition led to a significant acidification of intracellular pH in the branched end buds that preceded a number of events, including altered tissue polarity of myoepithelial cells, loss of NHE1 basal polarity, F-actin rearrangements, and decreased E-cadherin expression. CONCLUSIONS: Our results implicate NHE1 function and intracellular pH homeostasis as key factors that maintain mammary tissue architecture, thus, indirectly allowing for mammary function as a milk-providing (form) and -producing (function) gland.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Polaridade Celular/fisiologia , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Actinas/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Caderinas/metabolismo , Proteínas de Transporte de Cátions/antagonistas & inibidores , Morte Celular/fisiologia , Células Cultivadas , Feminino , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Immunoblotting , Queratinas/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos , Faloidina , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...