Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(2): 327-343, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278953

RESUMO

The model plant Physcomitrium patens has played a pivotal role in enhancing our comprehension of plant evolution and development. However, the current genome harbours numerous regions that remain unfinished and erroneous. To address these issues, we generated an assembly using Oxford Nanopore reads and Hi-C mapping. The assembly incorporates telomeric and centromeric regions, thereby establishing it as a near telomere-to-telomere genome except a region in chromosome 1 that is not fully assembled due to its highly repetitive nature. This near telomere-to-telomere genome resolves the chromosome number at 26 and provides a gap-free genome assembly as well as updated gene models to aid future studies using this model organism.


Assuntos
Centrômero , Telômero , Centrômero/genética , Telômero/genética , Genoma de Planta
2.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790099

RESUMO

Taxonomically restricted genes (TRGs) are unique for a defined group of organisms and may act as potential genetic determinants of lineage-specific, biological properties. Here, we explore the TRGs of highly diverse and economically important Bacillus bacteria by examining commonly used TRG identification parameters and data sources. We show the significant effects of sequence similarity thresholds, composition, and the size of the reference database in the identification process. Subsequently, we applied stringent TRG search parameters and expanded the identification procedure by incorporating an analysis of noncoding and non-syntenic regions of non-Bacillus genomes. A multiplex annotation procedure minimized the number of false-positive TRG predictions and showed nearly one-third of the alleged TRGs could be mapped to genes missed in genome annotations. We traced the putative origin of TRGs by identifying homologous, noncoding genomic regions in non-Bacillus species and detected sequence changes that could transform these regions into protein-coding genes. In addition, our analysis indicated that Bacillus TRGs represent a specific group of genes mostly showing intermediate sequence properties between genes that are conserved across multiple taxa and nonannotated peptides encoded by open reading frames.


Assuntos
Bacillus , Bacillus/genética , Genoma , Genômica , Fases de Leitura Aberta
3.
Head Neck Pathol ; 14(2): 503-506, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31782117

RESUMO

Giant cell tumours (GCT) of the bone are uncommon primary bone neoplasms that occur mainly in the epiphysis of long bones. GCT of the skull is rarely encountered, particularly of the temporal bone. We report a rare case of giant cell tumour of the squamous portion of the temporal bone extending to the infratemporal fossa in a 38-year old male. The patient presented with progressive trismus, and swelling and pain in the right temporal region. The patient underwent excision of the mass by maxillary swing approach. The treatment of choice for GCT is complete surgical excision. Based on the location and extent of the GCT in the infratemporal fossa, several surgical approaches have been tried for its excision.


Assuntos
Neoplasias Ósseas/patologia , Tumor de Células Gigantes do Osso/patologia , Fossa Infratemporal/patologia , Osso Temporal/patologia , Adulto , Neoplasias Ósseas/cirurgia , Tumor de Células Gigantes do Osso/cirurgia , Humanos , Fossa Infratemporal/cirurgia , Masculino , Osso Temporal/cirurgia
4.
BMC Genomics ; 19(1): 868, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30509176

RESUMO

BACKGROUND: Environmental stress induced genetic polymorphisms have been suggested to arbitrate functional modifications influencing adaptations in microbes. The relationship between the genetic processes and concomitant functional adaptation can now be investigated at a genomic scale with the help of next generation sequencing (NGS) technologies. Using a NGS approach we identified genetic variations putatively underlying chromium tolerance in a strain of Aspergillus flavus isolated from a tannery sludge. Correlation of nsSNPs in the candidate genes (n = 493) were investigated for their influence on protein structure and possible function. Whole genome sequencing of chromium tolerant A. flavus strain (TERIBR1) was done (Illumina HiSeq2000). The alignment of quality trimmed data of TERIBR1 with reference NRRL3357 (accession number EQ963472) strain was performed using Bowtie2 version 2.2.8. SNP with a minimum read depth of 5 and not in vicinity (10 bp) of INDEL were filtered. Candidate genes conferring chromium resistance were selected and SNPs were identified. Protein structure modeling and interpretation for protein-ligand (CrO4- 2) docking for selected proteins harbouring non-synonymous substitutions were done using Phyre2 and PatchDock programs. RESULTS: High rate of nsSNPs (approximately 11/kb) occurred in selected candidate genes for chromium tolerance. Of the 16 candidate genes selected for studying effect of nsSNPs on protein structure and protein-ligand interaction, four proteins belonging to the Major Facilitator Superfamily (MFS) and recG protein families showed significant interaction with chromium ion only in the chromium tolerant A. flavus strain TERIBR1. CONCLUSIONS: Presence of nsSNPs and subsequent amino-acid alterations evidently influenced the 3D structures of the candidate proteins, which could have led to improved interaction with (CrO4- 2) ion. Such structural modifications might have enhanced chromium efflux efficiency of A. flavus (TERIBR1) and thereby offered the adaptation benefits in counteracting chromate stress. Our findings are of fundamental importance to the field of heavy-metal bio-remediation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Aspergillus flavus/genética , Cromo/toxicidade , DNA Fúngico/metabolismo , Genoma Fúngico , Esgotos/química , Adaptação Fisiológica/genética , Aspergillus flavus/efeitos dos fármacos , Sítios de Ligação , Cromo/química , Cromo/metabolismo , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Cinética , Ligantes , Simulação de Acoplamento Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
5.
Sci Rep ; 8(1): 13698, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209320

RESUMO

Oryza coarctata (KKLL; 2n = 4x = 48, 665 Mb) also known as Porteresia coarctata is an extreme halophyte species of genus Oryza. Using Illumina and Nanopore reads, we achieved the assembled genome size of 569.9 Mb, accounting 85.69% of the estimated genome size with N50 of 1.85 Mb and 19.89% repetitive region. We also found 230,968 simple sequence repeats (SSRs) and 5,512 non-coding RNAs (ncRNAs). The functional annotation of predicted 33,627 protein-coding genes and 4,916 transcription factors revealed that high salinity adaptation of this species is due to the exclusive or excessive presence of stress-specific genes as compared to rice. We have identified 8 homologs to salt-tolerant SOS1 genes, one of the three main components of salt overly sensitive (SOS) signal pathway. On the other hand, the phylogenetic analysis of the assembled chloroplast (134.75 kb) and mitochondrial genome (491.06 kb) favours the conservative nature of these organelle genomes within Oryza taxon.


Assuntos
Genoma de Planta/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Tolerantes a Sal/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma Mitocondrial/genética , RNA não Traduzido/genética , Salinidade , Transdução de Sinais/genética
6.
BMC Evol Biol ; 16(1): 220, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756202

RESUMO

BACKGROUND: Subtilisin-like serine proteases or Subtilases in fungi are important for penetration and colonization of host. In Hypocreales, these proteins share several properties with other fungal, bacterial, plant and mammalian homologs. However, adoption of specific roles in entomopathogenesis may be governed by attainment of unique biochemical and structural features during the evolutionary course. Due to such functional shifts Subtilases coded by different family members of Hypocreales acquire distinct features according to respective hosts and lifestyle. We conducted phylogenetic and DIVERGE analyses and identified important protein residues that putatively assign functional specificity to Subtilases in fungal families/species under the order Hypocreales. RESULTS: A total of 161 Subtilases coded by 10 species from five different families under the fungal order Hypocreales was included in the analysis. Based on the presence of conserved domains, the Subtilase genes were divided into three subfamilies, Subtilisin (S08.005), Proteinase K (S08.054) and Serine-carboxyl peptidases (S53.001). These subfamilies were investigated for phylogenetic associations, protein residues under positive selection and functional divergence among paralogous clades. The observations were co-related with the life-styles of the fungal families/species. Phylogenetic and Divergence analyses of Subtilisin (S08.005) and Proteinase K (S08.054) families of proteins revealed that the paralogous clades were clear-cut representation of familial origin of the protein sequences. We observed divergence between the paralogous clades of plant-pathogenic fungi (Nectriaceae), insect-pathogenic fungi (Cordycipitaceae/Clavicipitaceae) and nematophagous fungi (Ophiocordycipitaceae). In addition, Subtilase genes from the nematode-parasitic fungus Purpureocillium lilacinum made a unique cluster which putatively indicated that the fungus might have developed distinctive mechanisms for nematode-pathogenesis. Our evolutionary genetics analysis revealed evidence of positive selection on the Subtilisin (S08.005) and Proteinase K (S08.054) protein sequences of the entomopathogenic and nematophagous species belonging to Cordycipitaceae, Clavicipitaceae and Ophiocordycipitaceae families of Hypocreales. CONCLUSIONS: Our study provided new insights into the evolution of Subtilisin like serine proteases in Hypocreales, a fungal order largely consisting of biological control species. Subtilisin (S08.005) and Proteinase K (S08.054) proteins seemed to play important roles during life style modifications among different families and species of Hypocreales. Protein residues found significant in functional divergence analysis in the present study may provide support for protein engineering in future.


Assuntos
Evolução Molecular , Variação Genética , Hypocreales/enzimologia , Hypocreales/genética , Filogenia , Subtilisinas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada/genética , Endopeptidase K/genética , Funções Verossimilhança , Modelos Genéticos , Família Multigênica , Seleção Genética , Especificidade da Espécie
7.
BMC Genomics ; 16: 1004, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607873

RESUMO

BACKGROUND: The fungus Purpureocillium lilacinum is widely known as a biological control agent against plant parasitic nematodes. This research article consists of genomic annotation of the first draft of whole genome sequence of P. lilacinum. The study aims to decipher the putative genetic components of the fungus involved in nematode pathogenesis by performing comparative genomic analysis with nine closely related fungal species in Hypocreales. RESULTS: de novo genomic assembly was done and a total of 301 scaffolds were constructed for P. lilacinum genomic DNA. By employing structural genome prediction models, 13, 266 genes coding for proteins were predicted in the genome. Approximately 73% of the predicted genes were functionally annotated using Blastp, InterProScan and Gene Ontology. A 14.7% fraction of the predicted genes shared significant homology with genes in the Pathogen Host Interactions (PHI) database. The phylogenomic analysis carried out using maximum likelihood RAxML algorithm provided insight into the evolutionary relationship of P. lilacinum. In congruence with other closely related species in the Hypocreales namely, Metarhizium spp., Pochonia chlamydosporia, Cordyceps militaris, Trichoderma reesei and Fusarium spp., P. lilacinum has large gene sets coding for G-protein coupled receptors (GPCRs), proteases, glycoside hydrolases and carbohydrate esterases that are required for degradation of nematode-egg shell components. Screening of the genome by Antibiotics & Secondary Metabolite Analysis Shell (AntiSMASH) pipeline indicated that the genome potentially codes for a variety of secondary metabolites, possibly required for adaptation to heterogeneous lifestyles reported for P. lilacinum. Significant up-regulation of subtilisin-like serine protease genes in presence of nematode eggs in quantitative real-time analyses suggested potential role of serine proteases in nematode pathogenesis. CONCLUSIONS: The data offer a better understanding of Purpureocillium lilacinum genome and will enhance our understanding on the molecular mechanism involved in nematophagy.


Assuntos
Ascomicetos/genética , Agentes de Controle Biológico , Hibridização Genômica Comparativa , Genoma Fúngico , Genômica , Anotação de Sequência Molecular , Ascomicetos/metabolismo , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Estruturas Genéticas , Genômica/métodos , Filogenia , Transdução de Sinais , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...