Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 9(1): 115-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21135252

RESUMO

One mechanism by which AKT kinase-dependent hypersensitivity to mammalian target of rapamycin (mTOR) inhibitors is controlled is by the differential expression of cyclin D1 and c-MYC. Regulation of posttranscriptional processes has been demonstrated to be crucial in governing expression of these determinants in response to rapamycin. Our previous data suggested that cyclin D1 and c-MYC expression might additionally be coordinately regulated in an AKT-dependent manner at the level of transcription. Under conditions of relatively quiescent AKT activity, treatment of cells with rapamycin resulted in upregulation of cyclin D1 and c-MYC nascent transcription, whereas in cells containing active AKT, exposure repressed transcription. Promoter analysis identified AKT-dependent rapamycin responsive elements containing AP-1 transactivation sites. Phosphorylated c-JUN binding to these promoters correlated with activation of transcription whereas JUNB occupancy was associated with promoter repression. Forced overexpression of JunB or a conditionally active JunB-ER allele repressed cyclin D1 and c-MYC promoter activity in quiescent AKT-containing cells following rapamycin exposure. AIP4/Itch-dependent JUNB protein degradation was found to be markedly reduced in active AKT-containing cells compared with cells harboring quiescent AKT. Moreover, silencing AIP4/Itch expression or inhibiting JNK mediated AIP4 activity abrogated the rapamycin-induced effects on cyclin D1 and c-MYC promoter activities. Our findings support a role for the AKT-dependent regulation of AIP4/Itch activity in mediating the differential cyclin D1 and c-MYC transcriptional responses to rapamycin.


Assuntos
Ciclina D1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição AP-1/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Ciclina D1/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Modelos Genéticos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição AP-1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Cancer Res ; 67(24): 11712-20, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089801

RESUMO

mTORC2 is a multimeric kinase composed of the mammalian target of rapamycin kinase (mTOR), mLST8, mSin1, and rictor. The complex is insensitive to acute rapamycin exposure and has shown functions in controlling cell growth and actin cytoskeletal assembly. mTORC2 has recently been shown to phosphorylate and activate Akt. Because approximately 70% of gliomas harbor high levels of activated Akt, we investigated whether mTORC2 activity was elevated in gliomas. In this study, we found that mTORC2 activity was elevated in glioma cell lines as well as in primary tumor cells as compared with normal brain tissue (P < 0.05). Moreover, we found that rictor protein and mRNA levels were also elevated and correlated with increased mTORC2 activity. Overexpression of rictor in cell lines led to increased mTORC2 assembly and activity. These lines exhibited increased anchorage-independent growth in soft agar, increased S-phase cell cycle distribution, increased motility, and elevated integrin beta(1) and beta(3) expression. In contrast, small interfering RNA-mediated knockdown of rictor inhibited these oncogenic activities. Protein kinase C alpha (PKC alpha) activity was shown to be elevated in rictor-overexpressing lines but reduced in rictor-knockdown clones, consistent with the known regulation of actin organization by mTORC2 via PKC alpha. Xenograft studies using these cell lines also supported a role for increased mTORC2 activity in tumorigenesis and enhanced tumor growth. In summary, these data suggest that mTORC2 is hyperactivated in gliomas and functions in promoting tumor cell proliferation and invasive potential due to increased complex formation as a result of the overexpression of rictor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glioma/genética , Glioma/patologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Encefálicas , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Ensaio de Unidades Formadoras de Colônias , Regulação Neoplásica da Expressão Gênica , Glioma/fisiopatologia , Humanos , Lentivirus/genética , Invasividade Neoplásica , Plasmídeos , Regiões Promotoras Genéticas , Proteína Quinase C-alfa/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...