Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 113: 238-245, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38959555

RESUMO

BACKGROUND: The functional role of intrinsic foot muscles in the control of standing balance is often overlooked in rehabilitation, partly because the interactions with ankle muscles are poorly understood. RESEARCH QUESTION: How does coactivation of Flexor Digitorum Brevis (FDB) and soleus (SOL) vary across standing tasks of increasing difficulty. METHODS: Postural sway (Centre of Pressure, CoP) and the electromyographic (EMG) activity of FDB, SOL, Medial Gastrocnemius (MG) and Tibialis Anterior (TA) were measured during bipedal standing, tandem stance, one-legged balance, and standing on toes. Coherence of the rectified EMG signals for SOL and FDB in two bandwidths (0-5 and 10-20 Hz) was calculated as a coactivation index. RESULTS AND SIGNIFICANCE: The CoP sway and the EMG activity of all muscles was greater (P<0.05) for the three difficult tasks. Significant coherence between the SOL and FDB EMG activity was found in both frequency regions: 0-5 and 10-20 Hz. The coherence integral increased with the difficulty of the postural task, especially in the 10-20 Hz band. The findings underscore the important role of FDB in the control of standing balance across tasks and its coactivation with SOL. Clinical recommendations to improve balance control need to consider the interaction between the plantar flexor and intrinsic-foot muscles.

2.
J Sports Sci ; 42(11): 1011-1021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39023311

RESUMO

The aim of our study was to compare the force steadiness and the discharge characteristics of motor units in the tibialis anterior (TA) during ankle dorsiflexion and foot adduction produced by submaximal isometric contractions with the dominant and non-dominant foot. Fifteen young men performed maximal and submaximal contractions at five target forces with both legs, and motor unit activity in TA was recorded using high-density electromyography. Maximal force and the fluctuations in force during submaximal contractions were similar between the two legs (p > 0.05). Motor unit activity was characterized by measures of mean discharge rate (MDR), coefficient of variation for interspike interval (CoV for ISI), and standard deviation of the filtered cumulative spike train (SD of fCST). There were no statistically significant differences in motor unit activity between legs during ankle dorsiflexion. In contrast, the MDR and the CoV for ISI but not the SD of fCST, were greater for the non-dominant foot compared with the dominant foot during foot adduction. Nonetheless, these differences in motor unit activity were not sufficient to influence the force fluctuations during the submaximal contractions. These results indicate that control of the force produced by TA during the two actions was not influenced by limb dominance.


Assuntos
Tornozelo , Eletromiografia , , Contração Isométrica , Músculo Esquelético , Humanos , Masculino , Pé/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem , Contração Isométrica/fisiologia , Tornozelo/fisiologia , Lateralidade Funcional/fisiologia , Articulação do Tornozelo/fisiologia , Adulto , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...