Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Psychiatry Rep ; 25(10): 439-453, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37870687

RESUMO

PURPOSE OF REVIEW: We systematically reviewed and meta-analyzed the literature on the relationship between early maladaptive schemas (EMSs) and Cluster C personality disorders (PDs). Our aim was to clarify which of the 18 EMSs exhibit the strongest associations and are most frequently endorsed in clinical and non-clinical samples with Cluster C PDs and traits. RECENT FINDINGS: After initially screening 2622 records, 12 studies were selected with 5310 participants. Meta-analyses of the raw correlation coefficients for each EMS-Cluster C PD link (3-8 studies per meta-analysis) indicated that the 18 EMSs were significantly related to all three Cluster C PDs with r's ranging from .13 to .63. However, when considering endorsement rates among multiple regression studies that controlled for the EMSs intercorrelations and the effects of other PD traits and demographics, specific EMS constellations emerged for each Cluster C PD. Overall, the findings of the current paper suggest that Cluster C PDs might be conceptualized on the basis of a hybrid EMS model, in which all EMSs contribute to global personality dysfunction whereas specific EMS patterns reflect unique personality disorder style expressions. Longitudinal research with appropriate methodology is needed to draw more definite conclusions on the EMSs-Cluster C PDs relationships.


Assuntos
Transtornos da Personalidade , Personalidade , Humanos , Adaptação Psicológica , Inquéritos e Questionários
2.
Methods Mol Biol ; 2316: 89-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845688

RESUMO

A simplified dot-blot hybridization protocol for Potato spindle tuber viroid (PSTVd) detection in Solanaceae species is described here. The protocol uses an RNA DIG-labeled probe and a simplified extraction procedure that avoids the use of hazardous chemicals. PSTVd was detected in composite tomato leaf samples in a ratio of up to 1:15 of PSTVd-infected to non-infected tissue and in composite potato tuber samples in a ratio up to 1:5 of PSTVd-infected to non-infected tissue. In Brugmansia spp., PSTVd was detected solely in the standard sample extract preparation. The method is suitable for a reliable, large-scale sample screening especially where cost is a limiting factor.


Assuntos
Solanum tuberosum , Viroides , Solanum lycopersicum , Hibridização de Ácido Nucleico , Doenças das Plantas , Sondas RNA , RNA Viral/genética , Viroides/genética
3.
Pathogens ; 10(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578206

RESUMO

High-throughput sequencing (HTS) technologies and bioinformatic analyses are of growing interest to be used as a routine diagnostic tool in the field of plant viruses. The reliability of HTS workflows from sample preparation to data analysis and results interpretation for plant virus detection and identification must be evaluated (verified and validated) to approve this tool for diagnostics. Many different extraction methods, library preparation protocols, and sequence and bioinformatic pipelines are available for virus sequence detection. To assess the performance of plant virology diagnostic laboratories in using the HTS of ribosomal RNA depleted total RNA (ribodepleted totRNA) as a diagnostic tool, we carried out an interlaboratory comparison study in which eight participants were required to use the same samples, (RNA) extraction kit, ribosomal RNA depletion kit, and commercial sequencing provider, but also their own bioinformatics pipeline, for analysis. The accuracy of virus detection ranged from 65% to 100%. The false-positive detection rate was very low and was related to the misinterpretation of results as well as to possible cross-contaminations in the lab or sequencing provider. The bioinformatic pipeline used by each laboratory influenced the correct detection of the viruses of this study. The main difficulty was the detection of a novel virus as its sequence was not available in a publicly accessible database at the time. The raw data were reanalysed using Virtool to assess its ability for virus detection. All virus sequences were detected using Virtool in the different pools. This study revealed that the ribodepletion target enrichment for sample preparation is a reliable approach for the detection of plant viruses with different genomes. A significant level of virology expertise is needed to correctly interpret the results. It is also important to improve and complete the reference data.

4.
Plant Dis ; 2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-33934638

RESUMO

During winter 2020-2021, a severe virus-like disease outbreak was observed in eggplant (Solanum melongena L.) hybrids 'Monarca' (F1) and 'Angela' (F1) growing under protected conditions in Heraklion, Crete, Greece. In three greenhouses, the percentage of infected plants reached 100% leading to crop abandonment. Symptoms included leaf mottling and yellowing accompanied with plant stunting and apical necrosis. Extensive fruit damage was due to severe malformation and necrotic lesions on the calyx, peduncle and the endocarp (Sup. Fig. 1). To identify the causal agent, total RNA was extracted from a symptomatic eggplant fruit with PureLink™ RNA Mini Kit (ThermoFisher Scientific, USA), which was subjected to high throughput sequencing (HTS) analysis (Illumina Inc., USA). The de novo assembly of the obtained 25 million, 75 bp, single-end reads with Geneious Prime (Biomatters, New Zealand) and the annotation of the resulting contigs with BLASTn revealed the presence of only eggplant mottled crinkle virus (EMCV, genus Tombusvirus) in the sample. The assembled sequence of EMCV isolate from Greece (EMCV-Gr, GenBank Acc. No. MW716271) was 4764 bp in length, covering the full genome of the virus and showing 96.3 % nucleotide (nt) identity with an isolate identified from calla lilies (Zantedeschia sp.) in Taiwan (AM711119). Five symptomatic and seven asymptomatic 'Monarca' (F1) eggplants, as well as two symptomatic 'Angela' (F1) eggplants were tested by RT-PCR that targeted the capsid protein gene of the virus (Dombrovsky et al., 2009). PCR products of 1184 bp were obtained from the seven symptomatic samples and their Sanger sequencing revealed 100 % nt identity with the respective HTS-derived EMCV sequence. No product was obtained from the analysis of the asymptomatic samples. Mechanical sap transmission of the HTS analysed eggplant sample resulted in necrotic local lesions on Nicotiana rustica and Chenopodium quinoa, necrotic local lesions plus systemic necrosis on N. tabacum cv. Xanthi-nc, cv. Samsun and N. glutinosa, systemic collapse of N. benthamiana, and leaf mottling plus stunting of pepper cv. Yolo Wonder plants (Sup. Fig. 1I). Although no symptoms were observed on tomato plants cv. Ace 55, systemic EMCV infection was detected by RT-PCR. To establish the relationship between the disease and EMCV, infected tissue from N. benthamiana plants was used for the mechanical inoculation of virus-tested negative eggplant seedlings cv. Black beauty. Necrotic spots, shoot necrosis, leaf mottling and mosaic, symptoms were observed (Sup. Fig. J) on the test plants ten days post inoculation and the presence of the virus was confirmed by RT-PCR as described. To the best of our knowledge this is the first report of EMCV infecting eggplant in Greece. The virus was originally described in eggplant in Lebanon (Makkouk et al., 1981) and it is mainly present outside the European Union (EU) territory, including India, Japan, Taiwan, Iran and Israel (Dombrovsky et al., 2009 and references therein). A latent EMCV infection was detected in pear in Italy (Russo et al., 2002) and the virus is considered by the European Food Safety Authority as an exotic virus of the genera Cydonia, Malus, and Pyrus that meets all the criteria to qualify as an EU quarantine pest (Bragard et al., 2019). Τhe severity of the disease observed in Crete leading to the destruction of eggplant greenhouse cultivations, constitutes EMCV as an emerging threat to eggplant and other solanaceous crops for Greece and Europe.

5.
Phytopathology ; 111(10): 1782-1789, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33703919

RESUMO

Citrus impietratura disease (CID) is a graft transmissible, virus-like disease observed in old-line citrus trees; its characteristic symptom is the appearance of gum in the albedo of the affected fruits. To identify the causal agent of the disease, high-throughput sequencing (HTS) was performed on symptomatic orange fruits. The analysis of the obtained data revealed in all samples mixed infections of viroids commonly found in citrus trees together with the recently described citrus virus A (CiVA). Examination of additional symptomatic fruits with conventional reverse transcription PCR led to the identification of a single CiVA infection in one tree, which was verified by HTS. Indexing of the single CiVA-infected tree on indicator plants resulted in the appearance of characteristic symptoms in the leaves that were correlated with virus accumulation. Moreover, a comparative analysis among symptomatic and asymptomatic fruits derived from the same trees was performed and included the single CiVA-infected orange tree. The analysis revealed a positive correlation between the appearance of symptoms and the accumulation of CiVA RNAs. To facilitate CiVA detection during certification programs of propagation material, a quantitative RT-PCR targeting the movement protein of the virus was developed and evaluated for reliable and sensitive detection of the virus. To the best of our knowledge this is the first study that associates CiVA with the appearance of CID symptoms.


Assuntos
Citrus , Doenças das Plantas
6.
Methods Mol Biol ; 1875: 151-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30362002

RESUMO

A one-step multiplex quantitative reverse transcription polymerase chain reaction protocol is described, for the detection in pome trees of Pear blister canker viroid and Apple scar skin viroid, together with universal detection of phytoplasmas. Total nucleic acids extraction is performed according to a modified CTAB protocol and TaqMan MGB probes are used to surpass high genetic variability of viroids. The multiplex real-time assay is at least ten times more sensitive than conventional protocols and its features make it suitable for rapid and massive screening of pome fruit trees phytoplasmas and viroids in certification schemes and surveys.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Viroides/isolamento & purificação , DNA Bacteriano , Malus/microbiologia , Malus/virologia , Phytoplasma/genética , Doenças das Plantas/virologia , Pyrus/microbiologia , Pyrus/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Viroides/genética
7.
PLoS One ; 12(7): e0180877, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28749955

RESUMO

A one-step multiplex real-time reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan probes was developed for the simultaneous detection of Apple mosaic virus (ApMV), Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) in total RNA of pome trees extracted with a CTAB method. The sensitivity of the method was established using in vitro synthesized viral transcripts serially diluted in RNA from healthy, virus-tested (negative) pome trees. The three viruses were simultaneously detected up to a 10-4 dilution of total RNA from a naturally triple-infected apple tree prepared in total RNA of healthy apple tissue. The newly developed RT-qPCR assay was at least one hundred times more sensitive than conventional single RT-PCRs. The assay was validated with 36 field samples for which nine triple and 11 double infections were detected. All viruses were detected simultaneously in composite samples at least up to the ratio of 1:150 triple-infected to healthy pear tissue, suggesting the assay has the capacity to examine rapidly a large number of samples in pome tree certification programs and surveys for virus presence.


Assuntos
Frutas/virologia , Malus/virologia , Vírus de Plantas/fisiologia , Pyrus/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Árvores/virologia , RNA de Plantas/isolamento & purificação , Padrões de Referência , Reprodutibilidade dos Testes
8.
Front Microbiol ; 8: 45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174561

RESUMO

Recent advances in high-throughput sequencing technologies and bioinformatics have generated huge new opportunities for discovering and diagnosing plant viruses and viroids. Plant virology has undoubtedly benefited from these new methodologies, but at the same time, faces now substantial bottlenecks, namely the biological characterization of the newly discovered viruses and the analysis of their impact at the biosecurity, commercial, regulatory, and scientific levels. This paper proposes a scaled and progressive scientific framework for efficient biological characterization and risk assessment when a previously known or a new plant virus is detected by next generation sequencing (NGS) technologies. Four case studies are also presented to illustrate the need for such a framework, and to discuss the scenarios.

9.
Plant Dis ; 100(7): 1321-1330, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30686190

RESUMO

Quinone outside inhibitors (QoI) are powerful fungicides, which have been reported, additionally to their fungicide activity, to increase plant capacity to activate cellular defense responses and to promote plant growth. In this work, the effect of the QoI class fungicide pyraclostrobin was examined against Cucumber mosaic virus (CMV), Potato virus Y (PVY) and Pseudomonas syringae pv. tomato in tomato plants following artificial inoculation of the plants with the pathogens. Under controlled environmental conditions, pyraclostrobin delayed viral and bacterial disease development, even if P. syringae pv. tomato internal population levels were not affected significantly. In contrast, under field conditions in commercial greenhouses, a reduced CMV disease incidence throughout the tomato cultivation period was recorded. Gene expression analysis indicated an effect of pyraclostrobin application on tomato MAPKs transcript levels and a possible interference with plant stress responses.

10.
Adv Virus Res ; 91: 1-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25591875

RESUMO

Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/virologia , Vida Livre de Germes , Doenças das Plantas/prevenção & controle , Agricultura/métodos , Países Desenvolvidos , União Europeia , Cooperação Internacional , Doenças das Plantas/virologia , Estados Unidos
11.
J Virol Methods ; 213: 12-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479356

RESUMO

A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Phytoplasma/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Rosaceae/microbiologia , Rosaceae/virologia , Viroides/isolamento & purificação , Phytoplasma/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Sensibilidade e Especificidade , Fatores de Tempo , Árvores/microbiologia , Árvores/virologia , Viroides/genética
12.
Phytopathology ; 92(5): 563-72, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-18943032

RESUMO

ABSTRACT Lettuce mosaic virus (LMV) causes an economically important seedborne and aphid-transmitted disease of lettuce and ornamental crops worldwide. The genetic diversity among 73 LMV isolates was examined based on a 216-nucleotide sequence at the variable region encoding the NIb-coat protein junction. Three clusters of LMV isolates were distinguished: LMV-Yar, LMV-Greek, and LMV-RoW. In the latter cluster, two subgroups of isolates, LMV-Common and LMV-Most, accounted for a large proportion of the LMV isolates analyzed. These two subgroups included the seedborne isolates, consistent with this property contributing a selective advantage and resulting in widespread distribution. In addition to being seedborne, LMV-Most isolates overcome the two resistance genes commonly used in lettuce, mo1(1) and mo1(2), and thus represent a potential threat to lettuce cultivation. The complete sequence of an LMV-Most isolate (LMV-AF199) was determined, allowing a better definition of the genetic relationships among LMV-Most, LMV-Common, and an additional isolate of the LMV-RoW cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...