Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(12): e202200586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383100

RESUMO

In the current work, we describe the synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives via Hantzsch multicomponent reaction and their evaluation as photosystem II (PSII) inhibitors through chlorophyll a fluorescence bioassay. Among all the compounds tested, 1,1'-(2,4,6-trimethyl-1,4-dihydropyridine-3,5-diyl)bis(ethan-1-one) (4b) showed best results, reducing the parameters performance index on absorption basis (PIabs ) and electron transport per reaction center by 61 % and 49 %, respectively, as compared to the control. These results indicate the inhibitory activity of PSII over the electron transport chain. Additionally, a molecular docking approach using the protein D1 (PDB code 4V82) was performed in order to assess the structure-activity relationship among the 1,4-DHP derivatives over the PSII, which revealed that both, size of the group at position 4 and the carbonyl groups at the dihydropyridine ring are important for the ligand's interaction, particularly for the hydrogen-bonding interaction with the residues His215, Ser264, and Phe265. Thus, the optimization of these molecular features is the aim of our research group to extend the knowledge of PSII electron chain inhibitors and the establishment of new potent bioactive molecular scaffolds.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/química , Simulação de Acoplamento Molecular , Clorofila A , Fotossíntese , Complexo de Proteína do Fotossistema II , Clorofila/química
2.
Front Chem ; 10: 858323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034668

RESUMO

Sewage sludge, produced daily and inherent to urban development, presents problems of disposal that are still challenging today. Its disposal still offers palliative solutions, where the final destination is generally in landfills or, restrictively, to use in agriculture. The synthesis of carbon quantum dots (CQDs) from sewage sludge is a better alternative to use the stock of organic material present in the sludge. The present work aims to produce Carbon quantum dots (CQDs) using principles of green chemistry and to use an alternative raw material intrinsic stock of carbon present in sewage sludge, making its final disposal more sustainable. The material obtained has a core structure mainly composed of sp2 carbon and nitrogen. The surface functional groups containing sulfur, nitrogen, and oxygen of CQDs were investigated using FTIR and TG/DSC coupled FTIR techniques. The CQDs showed a luminescence decay time equivalent to fluorescent compounds and with satisfying quantum yield since no passive/oxidizing agent or material purification process was used. The photoluminescence spectroscopy analysis showed that the CDQs excitation λmax was at 360 nm and caused a λmax emission at 437 nm (CQDsa) and 430 nm (CQDsb). The CQDs obtained showed sizes of 9.69 ± 2.64 nm (CQDsa) and 10.92 ± 2.69 nm (CQDsb). In vitro experiments demonstrated the uptake of CQDs by the endothelial cell line EAhy 926 and their nontoxicity. However, the production of CQDs can be used for the sustainable disposal of sewage sludge.

3.
Chem Biodivers ; 18(10): e2100350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34399029

RESUMO

Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite-biomarkers, with the principal focus being on its primary metabolism. The 1 H-NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N-acetyl-mannosamine, which are precursors of special metabolites involved in plant self-defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.


Assuntos
Ascomicetos/metabolismo , Combretum/metabolismo , Metabolômica , Trichoderma/metabolismo , Ascomicetos/química , Combretum/química , Espectroscopia de Prótons por Ressonância Magnética , Trichoderma/química
4.
RSC Adv ; 9(10): 5259-5269, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35515916

RESUMO

The dielectric properties of Cymbopogon nardus, Eucalyptus sp., Piper aduncum and Piper hispidinervum were investigated as a function of frequency and temperature, using dry plant matter and its mixtures with water at different concentrations. This was followed by the extraction of essential oils performed with microwave heating in single-mode and multimode cavities with a variable power 6.0 kW generator operating at 2.45 GHz. The dielectric properties of the dry plant matter changed markedly with increasing water content, exhibiting high loss factors and small penetration depths. Due to the high level of absorption, even with low water contents, microwave-assisted extraction (MAE) showed better green performance employing lower plant matter/water ratios (1 : 2 or 1 : 4) and applying shorter extraction times compared with conventional hydrodistillation (HD). Using the single-mode MAE reactor, in the case of Cymbopogon nardus, for a plant matter/water ratio of 1 : 4 the energy efficiency was 1.78 g kW-1 h-1, applying 0.3 kW for 16.7 min. By way of comparison, for the same extraction time using HD, the corresponding efficiency was only 0.50 g kW-1 h-1. In experiments with citronella using multimode MAE, the best energy efficiency of 2.53 g kW-1 h-1 was obtained with a plant matter/water ratio of 1 : 2 applying 1.8 kW of power for 30 min. Single and multimode MAE experiments showed optimum conditions with lower water content. Thus, greater amounts of material can be processed in a shorter time, in accordance with the ideals of a green chemistry. The resulting extractions showed an energy efficiency up to 27 times greater compared with conventional HD, applying the same extraction time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...