Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165686, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953215

RESUMO

Mitochondrial dysfunctions are linked to a series of neurodegenerative human conditions, including Parkinson's disease, schizophrenia, optic neuropathies, and glaucoma. Recently, a series of studies have pointed mitotherapy - exogenous mitochondria transplant - as a promising way to attenuate the progression of neurologic disorders; however, the neuroprotective and pro-regenerative potentials of isolated mitochondria in vivo have not yet been elucidated. In this present work, we tested the effects of transplants of active (as well-coupled organelles were named), liver-isolated mitochondria on the survival of retinal ganglion cells and axonal outgrowth after optic nerve crush. Our data show that intravitreally transplanted, full active mitochondria incorporate into the retina, improve its oxidative metabolism and electrophysiological activity at 1 day after transplantation. Moreover, mitotherapy increases cell survival in the ganglion cell layer at 14 days, and leads to a higher number of axons extending beyond the injury site at 28 days; effects that are dependent on the organelles' structural integrity. Together, our findings support mitotherapy as a promising approach for future therapeutic interventions upon central nervous system damage.


Assuntos
Mitocôndrias/transplante , Regeneração Nervosa , Traumatismos do Nervo Óptico/terapia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Fracionamento Celular , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intravítreas , Fígado/citologia , Masculino , Traumatismos do Nervo Óptico/patologia , Estresse Oxidativo/fisiologia , Ratos
2.
Gene Ther ; 26(12): 479-490, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562387

RESUMO

Adeno-associated virus vectors (rAAV) are currently the most common vehicle used in clinical trials of retinal gene therapy, usually delivered through subretinal injections to target cells of the outer retina. However, targeting the inner retina requires intravitreal injections, a simple and safe procedure, which is effective for transducing the rodent retina, but still of low efficiency in the eyes of primates. We investigated whether adjuvant pharmacological agents may enhance rAAV transduction of the retinas of mouse and rat after intravitreal delivery. Tyrosine kinase inhibitors were highly efficient in mice, especially imatinib and genistein, and promoted transduction even of the outer retina. In rats, however, we report that they were not effective. Even with direct proteasomal inhibition in rats, the effects upon transduction were only minimal and restricted to the inner retina. Even tyrosine capsid mutant rAAVs in rats had a transduction profile similar to wtAAV. Thus, the differences between mouse and rat, in both eye size and the inner limiting membrane, compromise the efficiency of AAV vectors penetration from the vitreous into the retina, and impact the efficacy of strategies developed to enhance intravitreal retinal rAAV transduction. Further improvement of strategies, then are required.


Assuntos
Adjuvantes Farmacêuticos/administração & dosagem , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Retina/virologia , Animais , Eletrorretinografia , Terapia Genética , Genisteína/administração & dosagem , Mesilato de Imatinib/administração & dosagem , Injeções Intravítreas , Camundongos , Mutação , Ratos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...