Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36268793

RESUMO

The morphology, 16S rRNA gene phylogeny and 16S-23S rRNA gene ITS secondary structures of three strains of marine Cyanobacteria, isolated from inter- and subtidal environments from north Portugal were studied, resulting in the description of Zarconia navalis gen. nov., sp. nov. (Oscillatoriales incertae sedis), Romeriopsis navalis gen. nov., sp. nov. (Leptolyngbyaceae) and Romeriopsis marina sp. nov., named under the International Code of Nomenclature for algae, fungi, and plants. No diacritical morphological characters were found for the new genera and species. The 16S rRNA gene maximum-likelihood and Bayesian phylogenies supported that the genus Zarconia is a member of the Oscillatoriales, morphologically similar to the genera Microcoleus and Phormidium, but distant from them. The genus Romeriopsis is positioned within the Leptolyngbyaceae (Synechococcales) and is closely related to Alkalinema. The secondary structures of the D1-D1', Box B, V2 and V3 helices corroborate the phylogenetic results. Furthermore, our study supports previous observations of polyphyletic Oscillatoriales families and reinforces the need for their taxonomic revision.


Assuntos
Cianobactérias , Ácidos Graxos , Humanos , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Teorema de Bayes , Portugal , Composição de Bases , Ácidos Graxos/química
2.
J Nat Prod ; 85(7): 1704-1714, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35793792

RESUMO

Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.


Assuntos
Cianobactérias , Cycas , Cianobactérias/metabolismo , Cycas/microbiologia , Lipoglicopeptídeos/metabolismo , Raízes de Plantas/microbiologia , Simbiose
3.
Angew Chem Int Ed Engl ; 60(18): 10064-10072, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33599093

RESUMO

In recent years, extensive sequencing and annotation of bacterial genomes has revealed an unexpectedly large number of secondary metabolite biosynthetic gene clusters whose products are yet to be discovered. For example, cyanobacterial genomes contain a variety of gene clusters that likely incorporate fatty acid derived moieties, but for most cases we lack the knowledge and tools to effectively predict or detect the encoded natural products. Here, we exploit the apparent absence of a functional ß-oxidation pathway in cyanobacteria to achieve efficient stable-isotope-labeling of their fatty acid derived lipidome. We show that supplementation of cyanobacterial cultures with deuterated fatty acids can be used to easily detect natural product signatures in individual strains. The utility of this strategy is demonstrated in two cultured cyanobacteria by uncovering analogues of the multidrug-resistance reverting hapalosin, and novel, cytotoxic, lactylate-nocuolin A hybrids-the nocuolactylates.


Assuntos
Produtos Biológicos/análise , Cianobactérias/química , Descoberta de Drogas , Ácidos Graxos/análise , Cianobactérias/genética , Cianobactérias/metabolismo , Marcação por Isótopo , Família Multigênica , Oxirredução
4.
Toxins (Basel) ; 12(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096888

RESUMO

Microcystins (MCs) are hepatotoxins produced by some cyanobacteria. They are cyclic peptides that inhibit the serine/threonine protein phosphatases (PPs) PP1 and PP2A, especially PP2A. The inhibition of PP2A triggers a series of molecular events, which are responsible for most MC cytotoxic and genotoxic effects on animal cells. It is also known that MCs induce oxidative stress in cells due to the production of reactive oxygen species (ROS). However, a complete characterization of the toxic effects of MCs is still not accomplished. This study aimed to clarify additional molecular mechanisms involved in MC-LR toxicity, using Saccharomyces cerevisiae as eukaryotic model organism. First, a shotgun proteomic analysis of S. cerevisiae VL3 cells response to 1 nM, 10 nM, 100 nM, and 1 µM MC-LR was undertaken and compared to the control (cells not exposed to MC-LR). This analysis revealed a high number of proteins differentially expressed related with gene translation and DNA replication stress; oxidative stress; cell cycle regulation and carbohydrate metabolism. Inference of genotoxic effects of S. cerevisiae VL3 cells exposed to different concentrations of MC-LR were evaluated by analyzing the expression of genes Apn1, Apn2, Rad27, Ntg1, and Ntg2 (from the Base Excision Repair (BER) DNA repair system) using the Real-Time RT-qPCR technique. These genes displayed alterations after exposure to MC-LR, particularly the Apn1/Apn2/Rad27, pointing out effects of MC-LR in the Base Excision Repair system (BER). Overall, this study supports the role of oxidative stress and DNA replication stress as important molecular mechanisms of MC-LR toxicity. Moreover, this study showed that even at low-concentration, MC-LR can induce significant changes in the yeast proteome and in gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Proteoma/efeitos dos fármacos , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Front Microbiol ; 11: 1527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774329

RESUMO

Baeocytous cyanobacteria (Pleurocapsales/Subsection II) can thrive in a wide range of habitats on Earth but, compared to other cyanobacterial lineages, they remain poorly studied at genomic level. In this study, we sequenced the first genome from a member of the Hyella genus - H. patelloides LEGE 07179, a recently described species isolated from the Portuguese foreshore. This genome is the largest of the thirteen baeocyte-forming cyanobacterial genomes sequenced so far, and diverges from the most closely related strains. Comparative analysis revealed strain-specific genes and horizontal gene transfer events between H. patelloides and its closest relatives. Moreover, H. patelloides genome is distinctive by the number and diversity of natural product biosynthetic gene clusters (BGCs). The majority of these clusters are strain-specific BGCs with a high probability of synthesizing novel natural products. One BGC was identified as being putatively involved in the production of terminal olefin. Our results showed that, H. patelloides produces hydrocarbon with C15 chain length, and synthesizes C14, C16, and C18 fatty acids exceeding 4% of the dry cell weight. Overall, our data contributed to increase the information on baeocytous cyanobacteria, and shed light on H. patelloides evolution, phylogeny and natural product biosynthetic potential.

6.
Water Environ Res ; 92(4): 612-621, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31609032

RESUMO

Concentrations of phaeopigments (Pha) and chlorophyll a (Chl) were determined in surface waters from a temperate lagoon during six sampling campaigns at high and at low tide. In order to develop models for phaeopigment concentration in water, it was necessary to replace Chl with photosynthetic pigment concentration (Pt  = Pha+Chl) as one of the explanatory variables. Under first approximation, food availability and water temperature (T) could be considered as independent variables. The concentrations of Pha were then determined following seasonal change of response curves of the consumer community on T. However, multiple regression models with Pt , T and, eventually, salinity as explanatory variables were better able to depict Pha. All equations, developed with Pt , were also solved using Chl as an input variable. Although part of the performance was lost, such back-transformed models can be used at low/medium T and moderate to high concentrations of Chl. The developed equations about middle to long-term variations of Pha could be applied to study the biogeochemistry of contaminants related to Pha and to evaluate the dependence on temperature of phytoplankton utilization by consumers. PRACTITIONER POINTS: Phaeopigment concentration depicted by chlorophyll (Chl), temperature (T), and salinity. Better results obtained at low to medium T and moderate to high Chl concentration. Multiple regression (MR) better for extrapolation than model (S) with variable separation. Thermal response of consumer community in mesotrophic lagoon studied using model S.


Assuntos
Clorofila A , Fitoplâncton , Clorofila , Monitoramento Ambiental , Salinidade , Estações do Ano
7.
J Nat Prod ; 82(2): 393-402, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30715888

RESUMO

Small, single-celled planktonic cyanobacteria are ubiquitous in the world's oceans yet tend not to be perceived as secondary metabolite-rich organisms. Here we report the isolation and structure elucidation of hierridin C, a minor metabolite obtained from the cultured picocyanobacterium Cyanobium sp. LEGE 06113. We describe a simple, straightforward synthetic route to the scarcely produced hierridins that relies on a key regioselective halogenation step. In addition, we show that these compounds originate from a type III PKS pathway and that similar biosynthetic gene clusters are found in a variety of bacterial genomes, most notably those of the globally distributed picocyanobacteria genera Prochlorococcus, Cyanobium and Synechococcus.


Assuntos
Anisóis/química , Cianobactérias/metabolismo , Resorcinóis/metabolismo , Anisóis/metabolismo , Anisóis/farmacologia , Cianobactérias/genética , Genoma Bacteriano , Família Multigênica
8.
J Appl Phycol ; 30(3): 1437-1451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899596

RESUMO

Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.

9.
Environ Sci Pollut Res Int ; 25(18): 17371-17382, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29654462

RESUMO

The concentrations of dissolved and particulate inorganic mercury (IHg(II)) and methylmercury (MeHg) from the contaminated Laranjo Bay (main freshwater discharge from the Antuã River) were measured by species-specific isotope dilution during six sampling campaigns at high and at low tide. Different effective riverine concentrations were calculated, based on salinity profiles, for specific hydrological conditions. The export fluxes of total Hg and MeHg (324 and 1.24 mol year-1, respectively) from the bay to the rest of the Aveiro Lagoon are much higher than the input fluxes from the Hg source (3.9 and 0.05 mol year-1) and from the Antuã River (10.4 and 0.10 mol year-1). Resuspension of contaminated sediments from Laranjo Bay is crucial for the transport of both IHg(II) and MeHg. Methylation and/or selective enrichment into biogenic particles is responsible for the mobilization of MeHg. Sorption of dissolved IHg(II) onto suspended particles limits its export flux. This is one of the rarest examples where both speciation fluxes and partitioning of mercury are studied in a contaminated coastal environment. Despite the lower fraction of total MeHg (relative to total Hg), the contaminated lagoon may have an impact on coastal areas, particularly if change in the lagoon geometry occurs, due to sea level rise.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/química , Monitoramento Ambiental , Mercúrio/química , Compostos de Metilmercúrio/metabolismo , Portugal , Rios , Salinidade , Poluentes Químicos da Água/análise
10.
Front Microbiol ; 8: 1233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713360

RESUMO

Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.

11.
Sci Data ; 4: 170054, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440791

RESUMO

The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies.


Assuntos
Cianobactérias , Bases de Dados Factuais , Cianobactérias/classificação , Cianobactérias/fisiologia , Filogenia
12.
Mol Phylogenet Evol ; 111: 18-34, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28279808

RESUMO

Aiming at increasing the knowledge on marine cyanobacteria from temperate regions, we previously isolated and characterized 60 strains from the Portuguese foreshore and evaluate their potential to produce secondary metabolites. About 15% of the obtained 16S rRNA gene sequences showed less than 97% similarity to sequences in the databases revealing novel biodiversity. Herein, seven of these strains were extensively characterized and their classification was re-evaluated. The present study led to the proposal of five new taxa, three genera (Geminobacterium, Lusitaniella, and Calenema) and two species (Hyella patelloides and Jaaginema litorale). Geminobacterium atlanticum LEGE 07459 is a chroococcalean that shares morphological characteristics with other unicellular cyanobacterial genera but has a distinct phylogenetic position and particular ultrastructural features. The description of the Pleurocapsales Hyella patelloides LEGE 07179 includes novel molecular data for members of this genus. The filamentous isolates of Lusitaniella coriacea - LEGE 07167, 07157 and 06111 - constitute a very distinct lineage, and seem to be ubiquitous on the Portuguese coast. Jaaginema litorale LEGE 07176 has distinct characteristics compared to their marine counterparts, and our analysis indicates that this genus is polyphyletic. The Synechococcales Calenema singularis possess wider trichomes than Leptolyngbya, and its phylogenetic position reinforces the establishment of this new genus.


Assuntos
Cianobactérias/classificação , Oceano Atlântico , Cianobactérias/citologia , Cianobactérias/genética , Cianobactérias/ultraestrutura , DNA Bacteriano/genética , Genes Bacterianos , Funções Verossimilhança , Fixação de Nitrogênio/genética , Filogenia , Portugal , RNA Ribossômico 16S/genética , Especificidade da Espécie
13.
Environ Sci Technol ; 49(21): 12968-74, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26444256

RESUMO

Potential effects of metal nanoparticles on aquatic organisms and food webs are hard to predict from the results of single-species tests under controlled laboratory conditions, and more realistic exposure experiments are rarely conducted. We tested whether silver nanoparticles (Ag NPs) had an impact on zooplankton grazing on their prey, specifically phytoplankton and bacterioplankton populations. If Ag NPs directly reduced the abundance of prey, thereby causing the overall rate of grazing by their predators to decrease, a cascading effect on a planktonic estuarine food web would be seen. Our results show that the growth rates of both phytoplankton and bacterioplankton populations were significantly reduced by Ag NPs at concentrations of ≥500 µg L(-1). At the same time, grazing rates on these populations tended to decline with exposure to Ag NPs. Therefore, Ag NPs did not cause a cascade of effects through the food web but impacted a specific trophic level. Photosynthetic efficiency of the phytoplankton was significantly reduced at Ag NPs concentrations of ≥500 µg L(-1). These effects did not occur at relatively low concentrations of Ag that are often toxic to single species of bacteria and other organisms, suggesting that the impacts of Ag NP exposure may not be apparent at environmentally relevant concentrations due to compensatory processes at the community level.


Assuntos
Ecossistema , Estuários , Nanopartículas Metálicas/toxicidade , Plâncton/efeitos dos fármacos , Prata/toxicidade , Animais , Fluorescência , Processos Heterotróficos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Processos Fototróficos/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Zooplâncton/efeitos dos fármacos
14.
Front Microbiol ; 6: 473, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042108

RESUMO

Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.

15.
Environ Sci Pollut Res Int ; 22(16): 12501-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903181

RESUMO

To determine whether 2-amino-3-methylaminopropanoic acid (BMAA) could be taken up by marine organisms from seawater or their diet mussels Mytilus galloprovincialis, collected from the North Atlantic Portuguese shore, were exposed to seawater doped with BMAA standard (for up to 48 h) or fed with cyanobacteria (for up to 15 days). Mussels were able to uptake BMAA when exposed to seawater. Mussels fed with cyanobacteria Synechocystis salina showed a rise in BMAA concentration during feeding and a decline in concentration during the subsequent depuration period. Cells from the gills and hepatopancreas of mussels fed with S. salina showed lessened metabolic activity in mussels fed for longer periods of time. A hot acidic digestion (considered to account for total BMAA) was compared with a proteolytic digestion, using pepsin, trypsin and chymotrypsin. The latter was able to extract from mussels approximately 30% of total BMAA. Implications for BMAA trophic transfers in marine ecosystems are discussed.


Assuntos
Diamino Aminoácidos/farmacocinética , Monitoramento Ambiental/estatística & dados numéricos , Cadeia Alimentar , Mytilus/metabolismo , Diamino Aminoácidos/isolamento & purificação , Animais , Oceano Atlântico , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Monitoramento Ambiental/métodos , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Portugal , Água do Mar/química
16.
Environ Toxicol ; 30(3): 261-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24000190

RESUMO

The acute toxicity of cylindrospermopsin (CYN) has been established in rodents, based on diverse intraperitoneal an oral exposure studies and more recently in fish. But no data have been reported in fish after subchronic exposure to cyanobacterial cells containing this cyanotoxin, so far. In this work, tilapia (Oreochromis niloticus) were exposed by immersion to lyophilized Aphanizomenon ovalisporum cells added to the aquaria using two concentration levels of CYN (10 or 100 µg CYN L(-1)) and deoxy-cylindrospermopsin (deoxy-CYN) (0.46 or 4.6 µg deoxy-CYN L(-1)), during two different exposure times: 7 or 14 d. This is the first study showing damage in the liver, kidney, hearth, intestines, and gills of tilapia after subchronic exposure to cyanobacterial cells at environmental relevant concentrations. The major histological changes observed were degenerative processes and steatosis in the liver, membranous glomerulopathy in the kidney, myofibrolysis and edema in the heart, necrotic enteritis in the gastrointestinal tract, and hyperemic processes in gill lamellae and microhemorrhages. Moreover, these histopathological findings confirm that the extent of damage is related to the CYN concentration and length of exposure. Results from the morphometric study indicated that the average of nuclear diameter of hepatocytes and cross-sections of proximal and distal convoluted tubules are useful to evaluate the damage induced by CYN in the main targets of toxicity.


Assuntos
Ciclídeos/fisiologia , Cianobactérias/metabolismo , Uracila/análogos & derivados , Alcaloides/metabolismo , Animais , Aphanizomenon/metabolismo , Toxinas Bacterianas , Toxinas de Cianobactérias , Brânquias/metabolismo , Brânquias/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Rim/metabolismo , Rim/patologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Uracila/metabolismo , Uracila/toxicidade
17.
Microb Ecol ; 68(4): 671-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25008982

RESUMO

In situ interactions between cyanobacteria and metals were studied at Torrão reservoir (Tâmega River, North Portugal). The metal content of water and sediments from the reservoir was monitored monthly at Marco de Canaveses (seasonally subjected to toxic blooms of Microcystis aeruginosa) and upstream at Amarante (no blooms recorded), for 16 months. During the 16 months of the study period, M. aeruginosa bloomed twice at Marco de Canaveses, firstly forming a scum, and later with colonies scattered throughout the reservoir. Metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were analysed in the sediment and in the water column. Cu-binding ligands in water were also determined. When no blooms were taking place, average metal levels for water and sediment were not statistically different at both locations. Therefore, it was considered that the absence of cyanobacteria blooms at Amarante was not due to differences in metal content. When blooms were taking place at Marco de Canaveses, a significant increase of metal levels in the sediment occurred simultaneously. Sediment quality guidelines showed that during this period, Cu and Pb concentrations (32.3 and 43.2 mg kg(-1), respectively) were potentially toxic. However, quantification of the exchangeable metal fraction indicated that these metals were probably not bioavailable. Concentration of Cu-binding ligands in water was higher during the blooms, indicating that cyanobacteria are capable of changing the metal speciation in situ in a reservoir.


Assuntos
Eutrofização , Sedimentos Geológicos/química , Lagos/química , Metais Pesados/análise , Microcystis/fisiologia , Poluentes Químicos da Água/análise , Portugal , Estações do Ano , Espectrofotometria Atômica
18.
PLoS One ; 8(7): e69562, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922738

RESUMO

Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.


Assuntos
Anisóis/química , Anisóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Cianobactérias/química , Proliferação de Células/efeitos dos fármacos , Cianobactérias/classificação , Cianobactérias/genética , Células HT29 , Humanos , Filogenia , RNA Ribossômico 16S/genética
19.
Mar Drugs ; 11(4): 1316-35, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609580

RESUMO

Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles.


Assuntos
Cianobactérias/química , Filogenia , Bioensaio , Cromatografia Líquida , Cianobactérias/metabolismo , Espectrometria de Massas , Portugal
20.
FEBS J ; 280(2): 674-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22177231

RESUMO

Microcystins (MCs) are cyclic peptides, produced by cyanobacteria, that are hepatotoxic to mammals. The toxicity mechanism involves the potent inhibition of protein phosphatases, as the toxins bind the catalytic subunits of five enzymes of the phosphoprotein phosphatase (PPP) family of serine/threonine-specific phosphatases: Ppp1 (aka PP1), Ppp2 (aka PP2A), Ppp4, Ppp5 and Ppp6. The interaction with the proteins includes the formation of a covalent bond with a cysteine residue. Although this reaction seems to be accessory for the inhibition of PPP enzymes, it has been suggested to play an important part in the biological role of MCs and furthermore is involved in their nonenzymatic conjugation to glutathione. In this study, the molecular interaction of microcystins with their targeted PPP catalytic subunits is reviewed, including the relevance of the covalent bond for overall inhibition. The chemical reaction that leads to the formation of the covalent bond was evaluated in silico, both thermodynamically and kinetically, using quantum mechanical-based methods. As a result, it was confirmed to be a Michael-type addition, with simultaneous abstraction of the thiol hydrogen by a water molecule, transfer of hydrogen from the water to the α,ß-unsaturated carbonyl group of the microcystin and addition of the sulfur to the ß-carbon of the microcystin moiety. The calculated kinetics are in agreement with previous experimental results that had indicated the reaction to occur in a second step after a fast noncovalent interaction that inhibited the enzymes per se.


Assuntos
Domínio Catalítico , Cisteína/química , Microcistinas/química , Fosfoproteínas Fosfatases/química , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Gráficos por Computador , Cisteína/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Microcistinas/metabolismo , Microcistinas/toxicidade , Microcystis/química , Modelos Moleculares , Estrutura Molecular , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...