Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393232

RESUMO

Air pollution poses one of the greatest dangers to public well-being. This article outlines a study conducted in the Central Romania Region regarding the health risks associated with particulate matter (PM) of two sizes, viz., PM10 and PM2.5. The methodology used consists of the following: (i) an analysis of the effects of PM pollutants, (ii) an analysis of total mortality and cardiovascular-related mortality, and (iii) a general health risk assessment. The Central Region of Romania is situated in the Carpathian Mountains' inner arch (consisting of six counties). The total population of the region under investigation is about 2.6 million inhabitants. Health risk assessment is calculated based on the relative risk (RR) formula. During the study period, our simulations show that reducing these pollutants' concentrations below the new WHO guidelines (2021) will prevent over 172 total fatalities in Brasov alone, as an example. Furthermore, the potential benefit of reducing annual PM2.5 levels on total cardiovascular mortality is around 188 persons in Brasov. Although health benefits may also depend upon other physiological parameters, all general health indicators point towards a significant improvement in overall health by a general reduction in particulate matter, as is shown by the toxicity assessment of the particulate matter in the region of interest. The modality can be applied to other locations for similar studies.

2.
Polymers (Basel) ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959933

RESUMO

The process of electrospinning is over a century old, yet novel material and method achievements, and later the addition of nanomaterials in polymeric solutions, have spurred a significant increase in research innovations with several unique applications. Significant improvements have been achieved in the development of electrospun nanofibrous matrices, which include tailoring compositions of polymers with active agents, surface functionalization with nanoparticles, and encapsulation of functional materials within the nanofibers. Recently, sequentially combining fabrication of nanofibers with 3D printing was reported by our group and the synergistic process offers fiber membrane functionalities having the mechanical strength offered by 3D printed scaffolds. Recent developments in electrospun nanofibers are enumerated here with special emphasis on biomedical technologies, chemical and biological sensing, and energy harvesting aspects in the context of e-textile and tactile sensing. Energy harvesting offers significant advantages in many applications, such as biomedical technologies and critical infrastructure protection by using the concept of finite state machines and edge computing. Many other uses of devices using electrospun nanofibers, either as standalone or conjoined with 3D printed materials, are envisaged. The focus of this review is to highlight selected novel applications in biomedical technologies, chem.-bio sensing, and broadly in energy harvesting for use in internet of things (IoT) devices. The article concludes with a brief projection of the future direction of electrospun nanofibers, limitations, and how synergetic combination of the two processes will open pathways for future discoveries.

3.
World J Microbiol Biotechnol ; 38(7): 117, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35597812

RESUMO

Microplastics are one of the major contaminants of aquatic nature where they can interact with organic and inorganic pollutants, including trace metals, and adsorb them. At the same time, after the microplastics have entered the aquatic environments, they are quickly covered with a biofilm - microorganisms which are able to produce extracellular polymeric substances (EPS) that can facilitate sorption of trace metals from surrounding water. The microbial community of biofilm contains bacteria which synthesizes EPS with antimicrobial activity making them more competitive than other microbial inhabitants. The trace metal trapping by bacterial EPS can inhibit the development of certain microorganisms, therefore, a single microparticle participates in complex interactions of the diverse elements surrounding it. The presented review aims to consider the variety of interactions associated with the adsorption of trace metal ions on the surface of microplastics covered with biofilm, the fate of such microplastics and the ever-increasing risk to the environment caused by the combination of these large-scale pollutants - microplastics and trace metals. Since aquatic pollution problems affect the entire planet, strict regulation of the production, use, and disposal of plastic materials is needed to mitigate the effects of this emerging pollutant and its complexes could have on the environment and human health.


Assuntos
Poluentes Ambientais , Oligoelementos , Poluentes Químicos da Água , Biofilmes , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-33799803

RESUMO

The concentrations of some heavy metals (Fe, Zn, Mn, Cu, Mo, Pb, Cd) were measured in river waters, macrozoobenthos, and fish (Kura scrapers) from one of the most developed mining areas in Armenia, the Debed River catchment basin. In order to assess heavy metal contamination and its hydro-ecological and health effects, the macrozoobenthos quantitative and qualitative parameters, geo-accumulation index, and hazard index were determined. Microalgal extraction experiments were conducted to assess the microalgal remediation efficiency for heavy metal removal from mining wastewaters. The results showed that the rivers in many sites were polluted with different heavy metals induced by mining activities, which adversely affected macrozoobenthos growth and caused human health risks in the case of waters used for drinking purposes. However, the river fish, particularly Kura scrapers, were determined to be safe for consumption by the local people, as per the conditions of the evaluated fish ingestion rate. The results have shown that microalgal remediation, particularly with Desmodesmus abundans M3456, can be used for the efficient removal ~(62-100%) of certain emerging contaminants (Mn, Pb, Cu, Zn, Cd) from mining wastewater discharged in the Debed catchment basin.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Armênia , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
5.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498162

RESUMO

The development of membrane technology from biopolymer for water filtration has received a great deal of attention from researchers and scientists, owing to the growing awareness of environmental protection. The present investigation is aimed at producing poly(D-lactic acid) (PDLA) membranes, incorporated with nanocrystalline cellulose (NCC) and cellulose nanowhisker (CNW) at different loadings of 1 wt.% (PDNC-I, PDNW-I) and 2 wt.% (PDNC-II PDNW-II). From morphological characterization, it was evident that the nanocellulose particles induced pore formation within structure of the membrane. Furthermore, the greater surface reactivity of CNW particles facilitates in enhancing the surface wettability of membranes due to increased hydrophilicity. In addition, both thermal and mechanical properties for all nanocellulose filled membranes under investigation demonstrated significant improvement, particularly for PDNW-I-based membranes, which showed improvement in both aspects. The membrane of PDNW-I presented water permeability of 41.92 L/m2h, when applied under a pressure range of 0.1-0.5 MPa. The investigation clearly demonstrates that CNWs-filled PDLA membranes fabricated for this investigation have a very high potential to be utilized for water filtration purpose in the future.

6.
Sensors (Basel) ; 17(9)2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28891955

RESUMO

We present an investigation consisting of single walled carbon nanotubes (SWCNTs) based cryogenic temperature sensors, capable of measuring temperatures in the range of 2-77 K. Carbon nanotubes (CNTs) due to their extremely small size, superior thermal and electrical properties have suggested that it is possible to create devices that will meet necessary requirements for miniaturization and better performance, by comparison to temperature sensors currently available on the market. Starting from SWCNTs, as starting material, a resistive structure was designed. Employing dropcast method, the carbon nanotubes were deposited over pairs of gold electrodes and in between the structure electrodes from a solution. The procedure was followed by an alignment process between the electrodes using a dielectrophoretic method. Two sensor structures were tested in cryogenic field down to 2 K, and the resistance was measured using a standard four-point method. The measurement results suggest that, at temperatures below 20 K, the temperature coefficient of resistance average for sensor 1 is 1.473%/K and for sensor 2 is 0.365%/K. From the experimental data, it can be concluded that the dependence of electrical resistance versus temperature can be approximated by an exponential equation and, correspondingly, a set of coefficients are calculated. It is further concluded that the proposed approach described here offers several advantages, which can be employed in the fabrication of a microsensors for cryogenic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...