Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 246: 125651, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399873

RESUMO

Bacterial infection can hinder the infected wound healing process. Because of the growing drug-resistance bacteria, there is an urgent desire to develop alternative antibacterial strategies to the antibiotics. Herein, the quaternized chitosan coated CuS (CuS-QCS) nanozyme with peroxidase (POD)-like activity was developed through a facile biomineralized approach for synergistic efficient antibacterial therapy and wound healing. The CuS-QCS killed bacteria by the electrostatic bonding of positive charged QCS with bacteria and releasing Cu2+ to damage bacterial membrane. And importantly, CuS-QCS nanozyme exhibited higher intrinsic POD-like activity, which converted H2O2 with low concentration into highly toxic hydroxyl radical (OH) for the elimination of bacteria by oxidative stress. Through cooperation of POD-like activity, Cu2+ and QCS, CuS-QCS nanozyme exhibited excellent antibacterial efficacy of approximate 99.9 % against E. coli and S. aureus in vitro. In addition, the QCS-CuS was successfully used to promote the healing of S. aureus infected wound with good biocompatibility. This synergistic nanoplatform presented here shows great potential applications in the field of wound infection management.


Assuntos
Quitosana , Infecção dos Ferimentos , Humanos , Cobre , Staphylococcus aureus , Quitosana/farmacologia , Escherichia coli , Peróxido de Hidrogênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cicatrização , Antioxidantes , Sulfetos , Infecção dos Ferimentos/tratamento farmacológico , Peroxidases
2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108827

RESUMO

Sustained interest in the use of renewable resources for the production of medical materials has stimulated research on bacterial cellulose (BC) and nanocomposites based on it. New Ag-containing nanocomposites were obtained by modifying various forms of BC with Ag nanoparticles prepared by metal-vapor synthesis (MVS). Bacterial cellulose was obtained in the form of films (BCF) and spherical BC beads (SBCB) by the Gluconacetobacter hansenii GH-1/2008 strain under static and dynamic conditions. The Ag nanoparticles synthesized in 2-propanol were incorporated into the polymer matrix using metal-containing organosol. MVS is based on the interaction of extremely reactive atomic metals formed by evaporation in vacuum at a pressure of 10-2 Pa with organic substances during their co-condensation on the cooled walls of a reaction vessel. The composition, structure, and electronic state of the metal in the materials were characterized by transmission and scanning electron microscopy (TEM, SEM), powder X-ray diffraction (XRD), small-angle X-ray scattering (SAXS) and X-ray photoelectron spectroscopy (XPS). Since antimicrobial activity is largely determined by the surface composition, much attention was paid to studying its properties by XPS, a surface-sensitive method, at a sampling depth about 10 nm. C 1s and O 1s spectra were analyzed self-consistently. XPS C 1s spectra of the original and Ag-containing celluloses showed an increase in the intensity of the C-C/C-H groups in the latter, which are associated with carbon shell surrounding metal in Ag nanoparticles (Ag NPs). The size effect observed in Ag 3d spectra evidenced on a large proportion of silver nanoparticles with a size of less than 3 nm in the near-surface region. Ag NPs in the BC films and spherical beads were mainly in the zerovalent state. BC-based nanocomposites with Ag nanoparticles exhibited antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli bacteria and Candida albicans and Aspergillus niger fungi. It was found that AgNPs/SBCB nanocomposites are more active than Ag NPs/BCF samples, especially against Candida albicans and Aspergillus niger fungi. These results increase the possibility of their medical application.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Celulose/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Anti-Infecciosos/química , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Materials (Basel) ; 16(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110074

RESUMO

Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal-vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.3 and 1.8 nm, respectively, which was established by TEM. It was found that Au, both in the NPs and the composite with methotrexate, was in the Au0, Au+ and Au3+ states. The Au 4f spectra for Au-containing systems are very close. The effect of methotrexate was manifested in a slight decrease in the proportion of the Au0 state-from 0.81 to 0.76. In the Fe NPs, the main state is the Fe3+ state, and the Fe2+ state is also present in a small amount. The analysis of samples by SAXS registered highly heterogeneous populations of metal nanoparticles coexisting with a wide proportion of large aggregates, the number of which increased significantly in the presence of methotrexate. For Au conjugates with methotrexate, a very wide asymmetric fraction with sizes up to 60 nm and a maximum of ~4 nm has been registered. In the case of Fe, the main fraction consists of particles with a radius of 4.6 nm. The main fraction consists of aggregates up to 10 nm. The size of the aggregates varies in the range of 20-50 nm. In the presence of methotrexate, the number of aggregates increases. The cytotoxicity and anticancer activity of the obtained nanomaterials were determined by MTT and NR assays. Fe conjugates with methotrexate showed the highest toxicity against the lung adenocarcinoma cell line and Au nanoparticles loaded with methotrexate affected the human colon adenocarcinoma cell line. Both conjugates displayed lysosome-specific toxicity against the A549 cancer cell line after 120 h of culture. The obtained materials may be promising for the creation of improved agents for cancer treatment.

4.
Pharmaceutics ; 15(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36986670

RESUMO

New hybrid materials based on Ag nanoparticles stabilized by a polyaminopropylalkoxysiloxane hyperbranched polymer matrix were prepared. The Ag nanoparticles were synthesized in 2-propanol by metal vapor synthesis (MVS) and incorporated into the polymer matrix using metal-containing organosol. MVS is based on the interaction of extremely reactive atomic metals formed by evaporation in high vacuum (10-4-10-5 Torr) with organic substances during their co-condensation on the cooled walls of a reaction vessel. Polyaminopropylsiloxanes with hyperbranched molecular architectures were obtained in the process of heterofunctional polycondensation of the corresponding AB2-type monosodiumoxoorganodialkoxysilanes derived from the commercially available aminopropyltrialkoxysilanes. The nanocomposites were characterized using transmission (TEM) and scanning (SEM) electron microscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and Fourier-transform infrared spectroscopy (FTIR). TEM images show that Ag nanoparticles stabilized in the polymer matrix have an average size of 5.3 nm. In the Ag-containing composite, the metal nanoparticles have a "core-shell" structure, in which the "core" and "shell" represent the M0 and Mδ+ states, respectively. Nanocomposites based on silver nanoparticles stabilized with amine-containing polyorganosiloxane polymers showed antimicrobial activity against Bacillus subtilis and Escherichia coli.

5.
Polymers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146052

RESUMO

New functional medical materials with antibacterial activity based on biocompatible bacterial cellulose (BC) and Ag nanoparticles (Ag NPs) were obtained. Bacterial cellulose films were prepared by stationary liquid-phase cultivation of the Gluconacetobacter hansenii strain GH-1/2008 in Hestrin-Schramm medium with glucose as a carbon source. To functionalize the surface and immobilize Ag NPs deposited by magnetron sputtering, BC films were treated with low-pressure oxygen-nitrogen plasma. The composition and structure of the nanomaterials were studied using transmission (TEM) and scanning (SEM) electron microscopy and X-ray photoelectron spectroscopy (XPS). Using electron microscopy, it was shown that on the surface of the fibrils that make up the network of bacterial cellulose, Ag particles are stabilized in the form of aggregates 5-35 nm in size. The XPS C 1s spectra show that after the deposition of Ag NPs, the relative intensities of the C-OH and O-C-O bonds are significantly reduced. This may indicate the destruction of BC oxypyran rings and the oxidation of alcohol groups. In the Ag 3d5/2 spectrum, two states at 368.4 and 369.7 eV with relative intensities of 0.86 and 0.14 are distinguished, which are assigned to Ag0 state and Ag acetate, respectively. Nanocomposites based on plasma-treated BC and Ag nanoparticles deposited by magnetron sputtering (BCP-Ag) exhibited antimicrobial activity against Aspergillus niger, S. aureus and Bacillus subtilis.

6.
Gels ; 7(3)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34287283

RESUMO

The paper presents the preparation and characterization of novel composite materials based on microcrystalline cellulose (MCC) with silver nanoparticles (Ag NPs) in powder and gel forms. We use a promising synthetic conception to form the novel composite biomaterials. At first MCC was modified with colloidal solution of Ag NPs in isopropyl alcohol prepared via metal vapor synthesis. Then Ag-containing MCC powder was used as precursor for further preparation of the gels. The hydrogels were prepared by dissolving pristine MCC and MCC-based composite at low temperatures in aqueous alkali solution and gelation at elevated temperature. To prepare aerogels the drying in supercritical carbon dioxide was implemented. The as-prepared cellulose composites were characterized in terms of morphology, structure, and phase composition. Since many functional properties, including biological activity, in metal-composites are determined by the nature of the metal-to-polymer matrix interaction, the electronic state of the metal was carefully studied. The studied cellulose-based materials containing biologically active Ag NPs may be of interest for use as wound healing or water-purification materials.

7.
J Fungi (Basel) ; 6(3)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708303

RESUMO

The integration of copper nanoparticles as antifungal agents in polymeric matrices to produce copper polymer nanocomposites has shown excellent results in preventing the growth of a wide variety of toxigenic fungi. Copper-chitosan nanocomposite-based chitosan hydrogels (Cu-Chit/NCs hydrogel) were prepared using a metal vapor synthesis (MVS) and the resulting samples were described by transmission electron microscopy (TEM), X-ray fluorescence analysis (XRF), and small-angle X-ray scattering (SAXS). Aflatoxin-producing medium and VICAM aflatoxins tests were applied to evaluate their ability to produce aflatoxins through various strains of Aspergillus flavus associated with peanut meal and cotton seeds. Aflatoxin production capacity in four fungal media outlets revealed that 13 tested isolates were capable of producing both aflatoxin B1 and B2. Only 2 A. flavus isolates (Af11 and Af 20) fluoresced under UV light in the A. flavus and parasiticus Agar (AFPA) medium. PCR was completed using two specific primers targeting aflP and aflA genes involved in the synthetic track of aflatoxin. Nevertheless, the existence of aflP and aflA genes indicated some correlation with the development of aflatoxin. A unique DNA fragment of the expected 236 bp and 412 bp bands for aflP and aflA genes in A. flavus isolates, although non-PCR fragments have been observed in many other Aspergillus species. This study shows the antifungal activity of Cu-Chit/NCs hydrogels against aflatoxigenic strains of A. flavus. Our results reveal that the antifungal activity of nanocomposites in vitro can be effective depending on the type of fungal strain and nanocomposite concentration. SDS-PAGE and native proteins explain the apparent response of cellular proteins in the presence of Cu-Chit/NCs hydrogels. A. flavus treated with a high concentration of Cu-Chit/NCs hydrogels that can decrease or produce certain types of proteins. Cu-Chit/NCs hydrogel decreases the effect of G6DP isozyme while not affecting the activity of peroxidase isozymes in tested isolates. Additionally, microscopic measurements of scanning electron microscopy (SEM) showed damage to the fungal cell membranes. Cu-Chit/NCS hydrogel is an innovative nano-biopesticide produced by MVS is employed in food and feed to induce plant defense against toxigenic fungi.

8.
Antibiotics (Basel) ; 7(3)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135367

RESUMO

In this article, a series of silver-containing dressings are prepared by metal-vapor synthesis (MVS), and their antibacterial properties are investigated. The antibacterial activity of the dressings containing silver nanoparticles (AgNPs) against some Gram-positive, and Gram-negative microorganisms (Staphylococcus aureus, Staphylococcus haemolyticus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Moraxella spp.) has been determined. Based on the plasmon resonance frequency of these nanoparticles, the frequency of laser irradiation of the dressing was chosen. The gauze bandage examined showed pronounced antibacterial properties, especially to Staphylococcus aureus strain. When 470 nm laser radiation, with a power of 5 mW, was applied for 5 min, 4 h after inoculating the Petri dish, and placing a bandage containing silver nanoparticles on it, the antibacterial effect of the latter significantly increased-both against Gram-positive and Gram-negative microorganisms. The structure and chemical composition of the silver-containing nanocomposite were studied by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). The synthesized AgNPs demonstrate narrow and monomodal particle size distribution with an average size of 1.75 nm. Atoms of metal in Ag/bandage system are mainly in Ag° state, and the oxidized atoms are in the form of Ag-Ag-O groups.

9.
Acta Crystallogr B ; 61(Pt 3): 304-11, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15914895

RESUMO

The crystal structures of Cr(PhCN)(2) (2), (PhCN)Cr(PhCH(3)) (3) and (PhCN)Cr(PhCF(3)) (4) prepared by means of the Metal Vapor Synthesis (MVS) technique have been determined. Compounds (2), (3) and (4) crystallize as discrete sandwich complexes having intrinsic C(2v)(mm2), C(s)(m) and C(1)(1) symmetries, respectively. The X-ray diffraction study has revealed a synperiplanar conformation for (2) and (3), and a synclinal conformation for (4) with a torsion angle (C(ipso)1-Centroid1-Centroid2-C(ipso)2) of phi = 63.5 degrees . The angles between the ligand planes are 2.2, 3.9 and 1.8 degrees , respectively. The Cr atom is slightly (by 0.04-0.06 A) displaced towards the substituents from the line connecting the centers of the opposite aromatic rings. The Cr-C(ipso) distances are 2.115 (2)-2.137 (2), 2.112 (2) and 2.185 (3) A for CN, CF(3) and CH(3) groups, respectively. The CN groups as well as the H atoms lie out of the C(6) ring planes and are bent towards the Cr atom, but the C atom of the CH(3) group also lying out of the C(6) ring plane is bent away from the Cr atom. The C atom of the CF(3) group is essentially coplanar to the C(6) ring plane. There are no unusual intermolecular contacts in the structures of (2)-(4).


Assuntos
Cromo/química , Hidrocarbonetos Aromáticos/química , Nitrilas/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...