Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891538

RESUMO

Three-dimensional (3D) printing technology was able to generate great attention because of its unique methodology and for its major potential to manufacture detailed and customizable scaffolds in terms of size, shape and pore structure in fields like medicine, pharmaceutics and food. This study aims to fabricate an ink entirely composed of natural polymers, alginate, k-carrageenan and carboxymethyl cellulose (AkCMC). Extrusion-based 3D printing was used to obtain scaffolds based on a crosslinked interpenetrating polymer network from the alginate, k-carrageenan, carboxymethyl cellulose and glutaraldehide formulation using CaCl2, KCl and glutaraldehyde in various concentrations of acetic acid. The stabile bonding of the crosslinked scaffolds was assessed using infrared spectroscopy (FT-IR) as well as swelling, degradation and mechanical investigations. Moreover, morphology analysis (µCT and SEM) confirmed the 3D printed samples' porous structure. In the AkCMC-GA objects crosslinked with the biggest acetic acid concentration, the values of pores and walls are the highest, at 3.9 × 10-2 µm-1. Additionally, this research proves the encapsulation of vitamin B1 via FT-IR and UV-Vis spectroscopy. The highest encapsulation efficiency of vitamin B1 was registered for the AkCMC-GA samples crosslinked with the maximum acetic acid concentration. The kinetic release of the vitamin was evaluated by UV-Vis spectroscopy. Based on the results of these experiments, 3D printed constructs using AkCMC-GA ink could be used for soft tissue engineering applications and also for vitamin B1 encapsulation.

2.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003499

RESUMO

Uncontrollable bleeding continues to stand as the primary cause of fatalities globally following surgical procedures, traumatic incidents, disasters, and combat scenarios. The swift and efficient management of bleeding through the application of hemostatic agents has the potential to significantly reduce associated mortality rates. One significant drawback of currently available hemostatic products is their susceptibility to bacterial infections at the bleeding site. As this is a prevalent issue that can potentially delay or compromise the healing process, there is an urgent demand for hemostatic agents with antibacterial properties to enhance survival rates. To mitigate the risk of infection at the site of a lesion, we propose an alternative solution in the form of a chitosan-based sponge and antimicrobial agents such as silver nanoparticles (AgNPs) and lavender essential oil (LEO). The aim of this work is to provide a new type of hemostatic sponge with an antibacterial barrier against a wide range of Gram-positive and Gram-negative microorganisms: Staphylococcus epidermidis 2018 and Enterococcus faecalis VRE 2566 (Gram-positive strains) and Klebsiella pneumoniae ATCC 10031 and Escherichia coli ATCC 35218 (Gram-negative strains).


Assuntos
Quitosana , Hemostáticos , Nanopartículas Metálicas , Quitosana/farmacologia , Hemostáticos/farmacologia , Prata , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631504

RESUMO

Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as H2SO4 and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis. In the first method, cellulose was extracted by bleaching the cotton with H2O2. In the second method, NaOCl was utilized. For both methods, different concentrations of acids and enzymes were used to isolate nanocellulose materials, cellulose nanocrystals (CNC), and cellulose nanofibrils (CNF) at different temperatures. All obtained nanocellulose materials were analyzed through different techniques such as FT-IR, Zeta potentials, DLS, Raman spectroscopy, TGA, DSC, XRD, and SEM. The characteristic signals related to cellulose nanocrystals (CNC) were confirmed with the aid of Raman and FT-IR spectroscopy. According to the XRD results, the samples' crystallinity percentages range from 54.1% to 63.2%. The SEM image showed that long fibers break down into small fibers and needle-like features are seen on the surface of the fibers. Using different types of bleaching has no significant effect on the thermal stability of samples. The results demonstrate a successful method for synthesizing cellulose nanofibrils (CNF) from cotton through enzymatic hydrolysis, but the results also demonstrated that the choice of bleaching method has a significant impact on the hydrodynamic properties and crystallinity of both CNC and CNF samples.

4.
J Mater Chem B ; 11(34): 8241-8250, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37565837

RESUMO

In an effort to obtain porous scaffolds with improved mechanical properties and biocompatibility, the current study discusses nanocomposite materials based on poly(propylene fumarate)/N-vinyl pyrrolidone(PPF/NVP) networks reinforced with polymer-modified graphene oxide (GO@PPF). The GO@PPF nanofiller was synthesized through a facile and convenient surface esterification reaction, and the successful functionalization was demonstrated by complementary techniques such as FT-IR, XPS, TGA and TEM. The PPF/NVP/GO@PPF porous scaffolds obtained using NaCl as a porogen were further characterized in terms of morphology, mechanical properties, sol fraction, and in vitro degradability. SEM and nanoCT examinations of NaCl-leached samples revealed networks of interconnected pores, fairly uniform in size and shape. We show that the incorporation of GO@PPF in the polymer matrix leads to a significant enhancement in the mechanical properties, which we attribute to the formation of denser and more homogenous networks, as suggested by a decreased sol fraction for the scaffolds containing a higher amount of GO@PPF. Moreover, the surface of mineralized PPF/NVP/GO@PPG scaffolds is uniformly covered in hydroxyapatite-like crystals having a morphology and Ca/P ratio similar to bone tissue. Furthermore, the preliminary biocompatibility assessment revealed a good interaction between PPF/PVP/GO@PPF scaffolds and murine pre-osteoblasts in terms of cell viability and proliferation.


Assuntos
Polímeros , Cloreto de Sódio , Animais , Camundongos , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química
5.
Materials (Basel) ; 16(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37109983

RESUMO

In this study, TiO2 thin films formed by dip-coating on an FTO substrate were obtained and characterized using surface, optical and electrochemical techniques. The impact of the dispersant (polyethylene glycol-PEG) on the surface (morphology, wettability, surface energy), optical (band gap and Urbach energy) and electrochemical (charge-transfer resistance, flat band potential) properties were investigated. When PEG was added to the sol-gel solution, the optical gap energy of the resultant films was reduced from 3.25 to 3.12 eV, and the Urbach energy increased from 646 to 709 meV. The dispersant addition in the sol-gel process influences surface features, as evidenced by lower contact-angle values and higher surface energy achieved for a compact film with a homogenous nanoparticle structure and larger crystallinity size. Electrochemical measurements (cycle voltammetry, electrochemical impedance spectroscopy and the Mott-Schottky technique) revealed improved catalytic properties of the TiO2 film, due to a higher insertion/extraction rate of protons into the TiO2 nanostructure, as well as a decrease in charge-transfer resistance from 418 k to 23.4 k and a decrease in flat band potential from 0.055 eV to -0.019 eV. The obtained TiO2 films are a promising alternative for technological applications, due to their advantageous surface, optical and electrochemical features.

6.
Nanomaterials (Basel) ; 13(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049341

RESUMO

Active and stable materials that utilize solar radiation for promoting different reactions are critical for emerging technologies. Two of the most common polymeric carbon nitrides were prepared by the thermal polycondensation of melamine. The scope of this work is to investigate possible structural degradation before and after photoelectrochemical testing. The materials were characterized using synchrotron radiation and lab-based techniques, and subsequently degraded photoelectrochemically, followed by post-mortem analysis. Post-mortem investigations reveal: (1) carbon atoms bonded to three nitrogen atoms change into carbon atoms bonded to two nitrogen atoms and (2) the presence of methylene terminals in post-mortem materials. The study concludes that polymeric carbon nitrides are susceptible to photoelectrochemical degradation via ring opening.

7.
Front Bioeng Biotechnol ; 11: 1273277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170069

RESUMO

The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.

8.
Materials (Basel) ; 15(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36234345

RESUMO

Natural compounds are an important source of beneficial components that could be used in cancer therapy along with well-known cytostatic agents to enhance the therapeutic effect while targeting tumoral tissues. Therefore, nanoplatforms containing mesoporous silica and a natural polysaccharide, ulvan, extracted from Ulva Lactuca seaweed, were developed for irinotecan. Either mesoporous silica-ulvan nanoplatforms or irinotecan-loaded materials were structurally and morphologically characterized. In vitro drug release experiments in phosphate buffer solution with a pH of 7.6 emphasized the complete recovery of irinotecan in 8 h. Slower kinetics were obtained for the nanoplatforms with a higher amount of natural polysaccharide. Ulvan extract proved to be biocompatible up to 2 mg/mL on fibroblasts L929 cell line. The irinotecan-loaded nanoplatforms exhibited better anticancer activity than that of the drug alone on human colorectal adenocarcinoma cells (HT-29), reducing their viability to 60% after 24 h. Moreover, the cell cycle analysis proved that the irinotecan loading onto developed nanoplatforms caused an increase in the cell number trapped at G0/G1 phase and influenced the development of the tumoral cells.

9.
Nanomaterials (Basel) ; 12(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683785

RESUMO

Porphyrins are versatile structures capable of acting in multiple ways. A mixed substituted A3B porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by 1H- and 13C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.039-6.71 µM and a detection limit of 0.013 µM and, secondly, as corrosion inhibitors for carbon-steel (OL) in an acid medium giving a best performance of 88% in the case of coverings with Pt-porphyrin. Finally, the electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER) of the free-base and Pt-metalated A3B porphyrins was evaluated in strong alkaline and acidic electrolyte solutions. The best results were obtained for the electrode modified with the metalated porphyrin, drop-casted on a graphite substrate from an N,N-dimethylformamide solution. In the strong acidic medium, the electrode displayed an HER overpotential of 108 mV, at i = -10 mA/cm2 and a Tafel slope value of 205 mV/dec.

10.
Colloids Surf B Biointerfaces ; 213: 112423, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35231685

RESUMO

This work pledge to extend the therapeutic windows of hybrid nanoparticulate systems by engineering mannose-decorated hybrid nanoparticles based on poly lactic-co-glycolic acid (PLGA) and vegetable oil for efficient delivery of two lipophilic anti-inflammatory therapeutics (Celecoxib-CL and Indomethacin-IMC) to macrophages. The mannose surface modification of nanoparticles is achieved via O-palmitoyl-mannose spacer during the emulsification and nanoparticles assembly process. The impact of targeting motif on the hydrodynamic features (RH, PdI), stability (ζ-potential), drug encapsulation efficiency (DEE) is thoroughly investigated. Besides, the in vitro biocompatibility (MTT, LDH) and susceptibility of mannose-decorated formulations to macrophage as well their immunomodulatory activity (ELISA) are also evaluated. The monomodal distributed mannose-decorated nanoparticles are in the range of nanometric size (RH < 115 nm) with PdI < 0.20 and good encapsulation efficiency (DEE = 46.15% for CL and 76.20% for IMC). The quantitative investigation of macrophage uptake shows a 2-fold increase in fluorescence (RFU) of cells treated with mannose-decorated formulations as compared to non-decorated ones (p < 0.001) suggesting an enhanced cell uptake respectively improved macrophage targeting while the results of ELISA experiments suggest the potential immunomodulatory properties of the designed mannose-decorated hybrid formulations.


Assuntos
Manose , Nanopartículas , Anti-Inflamatórios/farmacologia , Portadores de Fármacos , Glicóis , Macrófagos , Tamanho da Partícula , Óleos de Plantas
11.
Polymers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054703

RESUMO

The present research work is focused on the design and investigation of electrospun composite membranes based on citric acid-functionalized chitosan (CsA) containing reduced graphene oxide-tetraethylene pentamine (CsA/rGO-TEPA) as materials with opportune bio-properties for applications in wound dressings. The covalent functionalization of chitosan (CS) with citric acid (CA) was achieved through the EDC/NHS coupling system and was checked by 1H-NMR spectroscopy and FTIR spectrometry. The mixtures to be electrospun were formulated by adding three concentrations of rGO-TEPA into the 1/1 (w/w) CsA/poly (ethylene oxide) (PEO) solution. The effect of rGO-TEPA concentration on the morphology, wettability, thermal stability, cytocompatibility, cytotoxicity, and anti-biofilm activity of the nanofibrous membranes was extensively investigated. FTIR and Raman results confirmed the covalent and non-covalent interactions that appeared between the system's compounds, and the exfoliation of rGO-TEPA sheets within the CsA in the presence of PEO (CsA/P) polymer matrix, respectively. SEM analysis emphasized the nanofibrous architecture of membranes and the presence of rGO-TEPA sheets entrapped into the CsA nanofiber structure. The MTT cellular viability assay showed a good cytocompatibility with the highest level of cell development and proliferation registered for the CsA/P composite nanofibrous membrane with 0.250 wt.% rGO-TEPA. The designed nanofibrous membranes could have potential applications in wound dressings, given that they showed a good anti-biofilm activity against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacterial strains.

12.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832430

RESUMO

PMMA bone cements are mainly used to fix implanted prostheses and are introduced as a fluid mixture, which hardens over time. The problem of infected prosthesis could be solved due to the development of some new antibacterial bone cements. In this paper, we show the results obtained to develop four different modified PMMA bone cements by using antimicrobial additives, such as gentamicin, peppermint oil incorporated in hydroxyapatite, and silver nanoparticles incorporated in a ceramic glass matrix (2 and 4%). The structure and morphology of the modified bone cements were investigated by SEM and EDS. We perform experimental measurements on wettability, hydration degree, and degradation degree after immersion in simulated body fluid. The cytotoxicity was evaluated by MTT assay using the human MG-63 cell line. Antimicrobial properties were checked against standard strains Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The addition of antimicrobial agents did not significantly affect the hydration and degradation degree. In terms of biocompatibility assessed by the MTT test, all experimental PMMA bone cements are biocompatible. The performance of bone cements with peppermint essential oil and silver nanoparticles against these two pathogens suggests that these antibacterial additives look promising to be used in clinical practice against bacterial infection.

13.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451338

RESUMO

In this study, some hybrid materials based on sodium alginate (NaAlg) and porous clay heterostructures (PCHs) were investigated as new hosts for 5-Fluorouracil (5-FU) encapsulation. The hybrid hosts were prepared by ionotropic gelation technique using different concentrations of PCHs (1, 3, and 10 wt%) in order to identify the optimal parameters for encapsulation and drug release. The obtained hybrid materials were characterized using FTIR Spectrometry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectrometry to investigate the interactions of the raw materials involved in the preparation of hybrid hosts, the influence of PCHs concentrations on drug encapsulation efficiency and drug release profile. All the results show that the synthesized hybrid materials were able to load a high amount of 5-FU, the encapsulation efficiency and the release profile being influenced by the concentrations of PCHs.

14.
Neurobiol Dis ; 158: 105469, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364974

RESUMO

Niemann-Pick type C disease is a rare and fatal lysosomal storage disorder presenting severe neurovisceral symptoms. Disease-causing mutations in genes encoding either NPC1 or NPC2 protein provoke accumulation of cholesterol and other lipids in specific structures of the endosomal-lysosomal system and degeneration of specific cells, notably neurons in the central nervous system (CNS). 2-hydroxypropyl-beta-cyclodextrin (CD) emerged as potential therapeutic approach based on animal studies and clinical data, but the mechanism of action in neurons has remained unclear. To address this topic in vivo, we took advantage of the retina as highly accessible part of the CNS and intravitreal injections as mode of drug administration. Coupling CD to gold nanoparticles allowed us to trace its intracellular location. We report that CD enters the endosomal-lysosomal system of neurons in vivo and enables the release of lipid-laden lamellar inclusions, which are then removed from the extracellular space by specific types of glial cells. Our data suggest that CD induces a concerted action of neurons and glial cells to restore lipid homeostasis in the central nervous system.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/metabolismo , Proteína C1 de Niemann-Pick/genética , Animais , Ouro , Corpos de Inclusão/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Retina/efeitos dos fármacos
15.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372065

RESUMO

The aim of our work is to prepare mucoadhesive particles with biopolymers and 5-Aminosalicylic acid (5ASA) using the ionotropic gelation technique to ensure a controlled drug release at the colon level with potential applications in the treatment of intestinal bowel disease (IBD). The preparation of particles through the crosslinking of Chitosan (CS) with sodium tripolyphosphate (TPP) using different mass ratios and the influence of the k-Carrageenan (kCG) layer were studied. UV-VIS spectrometry was employed to assess encapsulation efficiency and drug release profile of 5ASA. The particles were investigated using FT-IR spectrometry for chemical characterization and the DLS results highlighted a monodisperse particle size distribution. The morphology of the polymeric beads was investigated using micro-computer tomography (µCT) and Scanning Electron Microscopy (SEM). Particles based on Chitosan and k-Carrageenan were able to incorporate and preserve 5ASA in an acidic and alkaline medium. The 5ASA loaded polymeric particles obtained after immersion for 1 h in kCG solution exhibited the lowest release rate in pH = 1.2. Biocompatibility studies performed on all of the particles displayed a good viability for the CCD 841 CoN cells and low cytotoxicity. All of the results have shown that these new biomaterials could be a versatile platform of targeted carriers with potential applications in inflammatory bowel disease treatment.

16.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361689

RESUMO

Porous silica-based materials are a promising alternative to graphite anodes for Li-ion batteries due to their high theoretical capacity, low discharge potential similar to pure silicon, superior cycling stability compared to silicon, abundance, and environmental friendliness. However, several challenges prevent the practical application of silica anodes, such as low coulombic efficiency and irreversible capacity losses during cycling. The main strategy to tackle the challenges of silica as an anode material has been developed to prepare carbon-coated SiO2 composites by carbonization in argon atmosphere. A facile and eco-friendly method of preparing carbon-coated SiO2 composites using sucrose is reported herein. The carbon-coated SiO2 composites were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, cyclic voltammetry, and charge-discharge cycling. A C/SiO2-0.085 M calendered electrode displays the best cycling stability, capacity of 714.3 mAh·g-1, and coulombic efficiency as well as the lowest charge transfer resistance over 200 cycles without electrode degradation. The electrochemical performance improvement could be attributed to the positive effect of the carbon thin layer that can effectively diminish interfacial impedance.

17.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068207

RESUMO

This research study reports the development of chitosan/carboxylated graphene oxide (CS/GO-COOH) composite scaffolds with nanofibrous architecture using the electrospinning method. The concept of designed composite fibrous material is based on bringing together the biological properties of CS, mechanical, electrical, and biological characteristics of GO-COOH with the versatility and efficiency of ultra-modern electrospinning techniques. Three different concentrations of GO-COOH were added into a chitosan (CS)-poly(ethylene oxide) (PEO) solution (the ratio between CS/PEO was 3/7 (w/w)) and were used in the synthesis process of composite scaffolds. The effect of GO-COOH concentration on the spinnability, morphological and mechanical features, wettability, and biological properties of engineered fibrous scaffolds was thoroughly investigated. FTIR results revealed the non-covalent and covalent interactions that could take place between the system's components. The SEM micrographs highlighted the nanofibrous architecture of scaffolds, and the presence of GO-COOH sheets along the composite CS/GO-COOH nanofibers. The size distribution graphs showed a decreasing trend in the mean diameter of composite nanofibers with the increase in GO-COOH content, from 141.40 nm for CS/PG 0.1% to 119.88 nm for CS/PG 0.5%. The dispersion of GO-COOH led to composite scaffolds with increased elasticity; the Young's modulus of CS/PG 0.5% (84 ± 4.71 MPa) was 7.5-fold lower as compared to CS/PEO (662 ± 15.18 MPa, p < 0.0001). Contact angle measurements showed that both GO-COOH content and crosslinking step influenced the surface wettability of scaffolds, leading to materials with ~1.25-fold higher hydrophobicity. The in vitro cytocompatibility assessment showed that the designed nanofibrous scaffolds showed a reasonable cellular proliferation level after 72 h of contact with the fibroblast cells.

18.
Bioact Mater ; 6(10): 3383-3395, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817417

RESUMO

New materials are required for bone healing in regenerative medicine able to temporarily substitute damaged bone and to be subsequently resorbed and replaced by endogenous tissues. Taking inspiration from basic composition of the mammalian bones, composed of collagen, apatite and a number of substitution ions, among them magnesium (Mg2+), in this work, novel composite scaffolds composed of collagen(10%)-hydroxyapatite (HAp)(90%) and collagen(10%)-HAp(80%)-Mg(10%) were developed. The lyophilization was used for composites preparation. An insight into the nanostructural nature of the developed scaffolds was performed by Scanning Electron Microscopy coupled with Energy Dispersive X-Ray and Transmission Electron Microscopy coupled with Energy Dispersive X-Ray. The HAp nanocrystallite clusters and Mg nanoparticles were homogeneously distributed within the scaffolds and adherent to the collagen fibrils. The samples were tested for degradation in Simulated Body Fluid (SBF) solution by soaking for up to 28 days. The release of Mg from collagen(10%)-HAp(80%)-Mg(10%) composite during the period of up to 21 days was attested, this composite being characterized by a decreased degradation rate with respect to the composite without Mg. The developed composite materials are promising for applications as bone substitute materials favouring bone healing and regeneration.

19.
Nanomaterials (Basel) ; 11(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808156

RESUMO

The paper presents the obtention and characterization of Portland cement mortars with limestone filler and nano-calcite additions. The nano-calcite was obtained by the injection of CO2 in a nano-Ca(OH)2 suspension. The resulted nano-CaCO3 presents different morphologies, i.e., polyhedral and needle like crystals, depending on the initial Ca(OH)2 concentration of the suspension. The formation of calcium carbonate in suspensions was confirmed by X-ray diffraction (XRD), complex thermal analysis (DTA-TG), scanning electron microscopy (SEM) and transmission electron microscopy (TEM and HRTEM). This demonstrates the viability of this method to successfully sequestrate CO2 in cement-based materials. The use of this type of nano-CaCO3 in mortar formulations based on PC does not adversely modify the initial and final setting time of cements; for all studied pastes, the setting time decreases with increase of calcium carbonate content (irrespective of the particle size). Specific hydrated phases formed by Portland cement hydration were observed in all mortars, with limestone filler additions or nano-CaCO3, irrespective of curing time. The hardened mortars with calcium carbonate additions (in adequate amounts) can reach the same mechanical strengths as reference (Portland cement mortar). The addition of nano-CaCO3 in the raw mix increases the mechanical strengths, especially at shorter hardening periods (3 days).

20.
Ultrason Sonochem ; 72: 105404, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33341709

RESUMO

Platinum group metals, such as Pd and Pt, found in three-way catalyst converters were recycled in a two-step method: hydrodynamic cavitation followed by sonoelectrochemical dissolution. High shear forces were obtained by using a convergent nozzle with a throat diameter of 0.2 mm, feeded by a plunger pump at a pressure of 60 MPa. Cavitating submerged jets acted locally on the water dispersed waste catalyst. As-obtained samples were analyzed by scanning electron microscopy and transmission electron microscopy. Electron microscopy on the initial sample showed that round shaped Pd and Pt nanoparticles were randomly distributed on the Al2O3 matrix. Cavitated samples show two zones in which Pt and Pd were partially and completely separated from the cordierite. The hydrodynamic cavitation separates the Pd and Pt from the cordierite leading to an apparent increase in Pd and Pt concentrations of 9% and 34% respectively. Conventional electrochemistry showed a dissolution of 20% in 1 h. To further accelerate the dissolution, a sonotrode operating at 20 kHz and 75 W was placed inside an electrochemical cell in order to increase the mass transport and obtain high dissolution rates. Indeed, the results showed that 40% of the available Pd and Pt can be recycled in just 1 h. In the absence of hydrodynamic cavitation and using conventional electrochemistry less than 10% of the available Pt and Pd is recovered in 1 h. The cost analysis showed that Pd and Pt can be recovered at less than 10 EUR per g which is 5 times smaller than their current market price.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...