Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Schizophr Res ; 263: 109-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524635

RESUMO

Catatonia is a psychiatric disorder, which subsumes a plethora of affective, motor and behavioral symptoms. In the last two decades, the number of behavioral and neuroimaging studies on catatonia has steadily increased. The majority of behavioral and neuroimaging studies in psychiatric patients suggested aberrant higher-order frontoparietal networks which, on the biochemical level, are insufficiently modulated by gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission. However, the pathomechanisms of catatonic symptoms have rarely been studied using rodent models. Here, we performed a scoping review of literature available on PubMed for studies on rodent models of catatonia. We sought to identify what we could learn from pre-clinical animal models of catatonia-like symptoms, their underlying neuronal correlates, and the complex molecular (i.e. genes and neurotransmitter) mechanisms by which its modulation exerts its effects. What becomes evident is that although many transgenic models present catatonia-like symptoms, they have not been used to better understand the pathophysiological mechanisms underlying catatonia so far. However, the identified neuronal correlates of catatonia-like symptoms correlate to a great extent with findings from neuroscience research in psychiatric patients. This points us towards fundamental cortical-striatal-thalamocortical and associated networks modulated by white matter inflammation as well as aberrant dopaminergic, GABAergic, and glutamatergic neurotransmission that is involved in catatonia. Therefore, this scoping review opens up the possibility of finally using transgenic models to help with identifying novel target mechanisms for the development of new drugs for the treatment of catatonia.


Assuntos
Catatonia , Animais , Humanos , Catatonia/diagnóstico , Ácido gama-Aminobutírico
2.
Artigo em Inglês | MEDLINE | ID: mdl-37934233

RESUMO

S-ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and psilocybin, a 5-hydroxy-tryptamine (serotonin) 2A receptor (5-HT2AR) agonist, are reported as effective rapid-acting antidepressants. Both compounds increase glutamate signalling and evoke cortical hyperexcitation. S-ketamine induces neurotoxicity especially in the retrosplenial cortex (Olney's lesions). Whether psilocybin produces similar neurotoxic effects has so far not been investigated. We performed an immunohistochemical whole-brain mapping for heat shock protein 70 (HSP70) in rats treated with psilocybin, S-ketamine, and MK-801. In contrast to S-ketamine- and MK-801-treated animals, we did not detect any HSP70-positive neurons in retrosplenial cortex of rats treated with psilocybin. Our results suggest that psilocybin might be safer for clinical use compared to S-ketamine regarding neuronal damage.

3.
Int J Neuropsychopharmacol ; 25(11): 946-950, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974297

RESUMO

Rapastinel, formerly Glyx-13, is a novel positive allosteric modulator of the N-methyl-D-aspartate-receptor (NMDAR) that counteracts psychotomimetic actions of NMDAR antagonists. We set out to evaluate the effect of rapastinel alone or in combination with the global and GluN2B subunit-specific NMDAR antagonists MK-801 and Ro25-6981, respectively, on neuronal activation in relevant regions using c-fos brain mapping. Whereas rapastinel alone did not trigger significant c-fos expression beyond the prelimbic cortex, it strongly increased the c-fos expression induced by MK-801 in hippocampal, cingulate, and retrosplenial areas. Similar results were obtained when rapastinel was replaced by D-cycloserine. Our results reveal new interactions at network level between NMDAR modulators with possible implications regarding their therapeutic effects.


Assuntos
Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antidepressivos/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo
4.
Eur Arch Psychiatry Clin Neurosci ; 271(8): 1587-1591, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32789675

RESUMO

Rapastinel is a novel psychoactive substance that acts as an N-methyl-D-aspartate-receptor (NMDAR) agonist and triggers antidepressant- and antipsychotic-like effects in animal models. However, it is unknown if rapastinel possesses a better side-effect profile than fast-acting glutamatergic antidepressants, like ketamine, which trigger neurotoxicity in the perinatal rodent cortex and protracted schizophrenia-like alterations. Here we found a remarkable neuroprotective effect of rapastinel against apoptosis induced by the NMDAR antagonist MK-801 in comparison to that elicited by clozapine and the mGlu2/3 agonist LY354740. These results suggest the potential therapeutic/prophylactic effect of rapastinel in ameliorating deleterious effects induced by NMDAR blockade during neurodevelopment.


Assuntos
Córtex Cerebral , Fármacos Neuroprotetores , Oligopeptídeos , Receptores de N-Metil-D-Aspartato , Animais , Córtex Cerebral/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Biol Psychiatry ; 84(2): 116-128, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29397900

RESUMO

BACKGROUND: To explore the domain-general risk factor of early-life social stress in mental illness, rearing rodents in persistent postweaning social isolation has been established as a widely used animal model with translational relevance for neurodevelopmental psychiatric disorders such as schizophrenia. Although changes in resting-state brain connectivity are a transdiagnostic key finding in neurodevelopmental diseases, a characterization of imaging correlates elicited by early-life social stress is lacking. METHODS: We performed resting-state functional magnetic resonance imaging of postweaning social isolation rats (N = 23) 9 weeks after isolation. Addressing well-established transdiagnostic connectivity changes of psychiatric disorders, we focused on altered frontal and posterior connectivity using a seed-based approach. Then, we examined changes in regional network architecture and global topology using graph theoretical analysis. RESULTS: Seed-based analyses demonstrated reduced functional connectivity in frontal brain regions and increased functional connectivity in posterior brain regions of postweaning social isolation rats. Graph analyses revealed a shift of the regional architecture, characterized by loss of dominance of frontal regions and emergence of nonfrontal regions, correlating to our behavioral results, and a reduced modularity in isolation-reared rats. CONCLUSIONS: Our result of functional connectivity alterations in the frontal brain supports previous investigations postulating social neural circuits, including prefrontal brain regions, as key pathways for risk for mental disorders arising through social stressors. We extend this knowledge by demonstrating more widespread changes of brain network organization elicited by early-life social stress, namely a shift of hubness and dysmodularity. Our results highly resemble core alterations in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and attention-deficit/hyperactivity disorder in humans.


Assuntos
Encéfalo/fisiopatologia , Condicionamento Psicológico , Transtornos Mentais/fisiopatologia , Vias Neurais/fisiopatologia , Isolamento Social , Animais , Comportamento Animal , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Desmame
6.
Neurosci Biobehav Rev ; 84: 352-358, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843752

RESUMO

A growing body of evidence supports the idea that drugs targeting the glutamate system may represent a valuable therapeutic alternative in major depressive disorders (MDD). The rapid and prolonged mood elevating effect of the NMDA receptor (NMDAR) antagonist ketamine has been studied intensely. However, its clinical use is hampered by deleterious side-effects, such as psychosis. Therefore, a better understanding of the mechanisms of the psychotropic effects after NMDAR blockade is necessary to develop glutamatergic antidepressants with improved therapeutic profile. Here we review recent experimental data that addressed molecular/cellular determinants of the antidepressant effect mediated by inactivating NMDAR subtypes. We refer to results obtained both in pharmacological and genetic animal models, ranging from global to conditional NMDAR manipulation. Our main focus is on the contribution of different NMDAR subtypes to the psychoactive effects induced by NMDAR ablation/blockade. We review data analyzing the effect of NMDAR subtype deletions limited to specific neuronal populations/brain areas in the regulation of mood. Altogether, these studies suggest effective and putative specific NMDAR drug targets for MDD treatment.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Terapia de Alvo Molecular/métodos , Isoformas de Proteínas/efeitos dos fármacos , Animais , Humanos
7.
Neuropsychiatr Dis Treat ; 13: 973-980, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408831

RESUMO

Classical monoaminergic antidepressants show several disadvantages, such as protracted onset of therapeutic action. Conversely, the fast and sustained antidepressant effect of the N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine raises vast interest in understanding the role of the glutamate system in mood disorders. Indeed, numerous data support the existence of glutamatergic dysfunction in major depressive disorder (MDD). Drawback to this short-latency therapy is its side effect profile, especially the psychotomimetic action, which seriously hampers the common and widespread clinical use of ketamine. Therefore, there is a substantial need for alternative glutamatergic antidepressants with milder side effects. In this article, we review evidence that implicates NMDARs in the prospective treatment of MDD with focus on rapastinel (formerly known as GLYX-13), a novel synthetic NMDAR modulator with fast antidepressant effect, which acts by enhancing NMDAR function as opposed to blocking it. We summarize and discuss current clinical and animal studies regarding the therapeutic potential of rapastinel not only in MDD but also in other psychiatric disorders, such as obsessive-compulsive disorder and posttraumatic stress disorder. Additionally, we discuss current data concerning the molecular mechanisms underlying the antidepressant effect of rapastinel, highlighting common aspects as well as differences to ketamine. In 2016, rapastinel received the Breakthrough Therapy designation for the treatment of MDD from the US Food and Drug Administration, representing one of the most promising alternative antidepressants under current investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...