Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 104(5-2): 055203, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942734

RESUMO

Resonances with electromagnetic whistler-mode waves are the primary driver for the formation and dynamics of energetic electron fluxes in various space plasma systems, including shock waves and planetary radiation belts. The basic and most elaborated theoretical framework for the description of the integral effect of multiple resonant interactions is the quasilinear theory, which operates through electron diffusion in velocity space. The quasilinear diffusion rate scales linearly with the wave intensity, D_{QL}∼B_{w}^{2}, which should be small enough to satisfy the applicability criteria of this theory. Spacecraft measurements, however, often detect whistle-mode waves sufficiently intense to resonate with electrons nonlinearly. Such nonlinear resonant interactions imply effects of phase trapping and phase bunching, which may quickly change the electron fluxes in a nondiffusive manner. Both regimes of electron resonant interactions (diffusive and nonlinear) are well studied, but there is no theory quantifying the transition between these two regimes. In this paper we describe the integral effect of nonlinear electron interactions with whistler-mode waves in terms of the timescale of electron distribution relaxation, ∼1/D_{NL}. We determine the scaling of D_{NL} with wave intensity B_{w}^{2} and other main wave characteristics, such as wave-packet size. The comparison of D_{QL} and D_{NL} provides the range of wave intensity and wave-packet sizes where the electron distribution evolves at the same rates for the diffusive and nonlinear resonant regimes. The obtained results are discussed in the context of energetic electron dynamics in the Earth's radiation belt.

2.
Phys Rev E ; 102(3-1): 033201, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075989

RESUMO

Large-amplitude fluctuations of the solar wind magnetic field can scatter energetic ions. One of the main contributions to these fluctuations is provided by solar wind discontinuities, i.e., rapid rotations of the magnetic field. This study shows that the internal configuration of such discontinuities plays a crucial role in energetic ion scattering in pitch angles. Kinetic-scale discontinuities accomplish very fast ion pitch-angle scattering. The main mechanism of such pitch-angle scattering is the adiabatic invariant destruction due to separatrix crossings in the phase space. We demonstrate that efficiency of this scattering does not depend on the magnetic field component across the discontinuity surface, i.e., both rotational and almost tangential discontinuities scatter energetic ions with the same efficiency. We also examine how the strong scattering effect depends on the deviations of the discontinuity magnetic field from the force-free one.

3.
Phys Rev E ; 95(2-1): 023204, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297839

RESUMO

In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.

4.
Phys Rev Lett ; 115(15): 155001, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550729

RESUMO

In this Letter, we demonstrate the effect of nonresonant charged-particle acceleration by an electrostatic wave propagating across the background magnetic field. We show that in the absence of resonance (i.e., when particle velocities are much smaller than the wave phase velocity) particles can be accelerated by electrostatic waves provided that the adiabaticity of particle motion is destroyed by magnetic field fluctuations. Thus, in a system with stochastic particle dynamics the electrostatic wave should be damped even in the absence of Landau resonance. The proposed mechanism is responsible for the acceleration of particles that cannot be accelerated via resonant wave-particle interactions. Simplicity of this straightforward acceleration scenario indicates a wide range of possible applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26066269

RESUMO

In this paper we consider resonant ion acceleration by a plasma jet originating from the magnetic reconnection region. Such jets propagate in the background magnetic field with significantly curved magnetic-field lines. Decoupling of ion and electron motions at the leading edge of the jet results in generation of strong electrostatic fields. Ions can be trapped by this field and get accelerated along the jet front. This mechanism of resonant acceleration resembles surfing acceleration of charged particles at a shock wave. To describe resonant acceleration of ions, we use adiabatic theory of resonant phenomena. We show that particle motion along the curved field lines significantly influences the acceleration rate. The maximum gain of energy is determined by the particle's escape from the system due to this motion. Applications of the proposed mechanism to charged-particle acceleration in the planetary magnetospheres and the solar corona are discussed.

6.
Chaos ; 12(4): 1043-1053, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12779628

RESUMO

We study transport properties in a simple model of two-dimensional roll convection under a slow periodic (period of order 1/ varepsilon >>1) perturbation. The problem is considered in terms of conservation of the adiabatic invariant. It is shown that the adiabatic invariant is well conserved in the system. It results in almost regular dynamics on large time scales (of order approximately varepsilon (-3) ln varepsilon ) and hence, fast transport. We study both generic systems and an example having some symmetry. (c) 2002 American Institute of Physics.

7.
Chaos ; 6(4): 514-518, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12780281

RESUMO

A close to identity symplectic mapping describing the dynamics of a charged particle in the field of an infinitely wide packet of electrostatic waves is studied. A region of chaotic dynamics, whose width is large for an arbitrarily small deviation of the mapping from the identity, exists on the phase cylinder. This is explained by the quasirandom change occurring in an adiabatic invariant of the problem when the phase trajectory crosses a resonance curve. An asymptotic formula is derived for the jump in the adiabatic invariant. The width of the chaos region and the density of the set of invariant curves near the boundary of the chaos region are estimated. (c) 1996 American Institute of Physics.

8.
Chaos ; 6(1): 67-77, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12780237

RESUMO

The steady incompressible flow in a unit sphere introduced by Bajer and Moffatt [J. Fluid Mech. 212, 337 (1990)] is discussed. The velocity field of this flow differs by a small perturbation from an integrable field whose streamlines are almost all closed. The unperturbed flow has two stationary saddle points (poles of the sphere) and a two-dimensional separatrix passing through them. The entire interior of the unit sphere becomes the domain of streamline chaos for an arbitrarily small perturbation. This phenomenon is explained by the nonconservation of a certain adiabatic invariant that undergoes a jump when a streamline crosses a small neighborhood of the separatrix of the unperturbed flow. An asymptotic formula is obtained for the jump in the adiabatic invariant. The accumulation of such jumps in the course of repeated crossings of the separatrix results in the complete breaking of adiabatic invariance and streamline chaos. (c) 1996 American Institute of Physics.

9.
Chaos ; 4(4): 673-680, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12780144

RESUMO

This paper considers the properties of the transport of impurity particles in steady fluid flows and describes the principal modes of particle motion. An impurity consisting of particles with a lower density than that of the medium is localized at stationary points of the flow, whereas a heavy impurity can perform a spatially unbounded motion. The conditions for the transition from the bounded motion of a heavy impurity to the long-range transport mode, which occurs as a result of a loss of the stability of the heteroclinic trajectory, are obtained for a model two-dimensional flow having an eddy-cell structure. A mode is found in which a particle, after being transported over a long distance, is trapped forever within the confines of one cell. The transition from regular to chaotic particle transport is analyzed. The question of the effect of a small noise (for example, molecular diffusion) on the character of the motion of a heavy impurity is investigated. It is shown that this effect is important at high viscosity and leads to a transition from bounded motion of the impurity particle to diffusion-type chaotic motion. (c) 1994 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...