Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(9): 093601, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932531

RESUMO

We study collective "free-space" radiation properties of two distant single-layer arrays of quantum emitters as two-level atoms. We show that this system can support a long-lived Bell superposition state of atomic excitations exhibiting strong subradiance, which corresponds to a nonlocal excitation of the two arrays. We describe the preparation of these states and their application in quantum information as a resource of nonlocal entanglement, including deterministic quantum state transfer with high fidelity between the arrays representing quantum memories. We discuss experimental realizations using cold atoms in optical trap arrays with subwavelength spacing, and analyze the role of imperfections.

2.
Phys Rev Lett ; 120(13): 133601, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694173

RESUMO

We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

3.
Klin Khir ; (8): 35-39, 2016 Aug.
Artigo em Russo | MEDLINE | ID: mdl-28661602

RESUMO

Literature data and own experience of the treatment complications, occurring after tho- racic operations, using sternotomy access, were presented. Special attention was drawn to postoperative sternomediastinitis - most frequent infectious complication. Measures for the sternomediastinitis prophylaxis, methods of its diagnosis and treat- ment were presented.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Mediastinite/tratamento farmacológico , Mediastino/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Esternotomia/métodos , Esterno/cirurgia , Humanos , Mediastinite/etiologia , Mediastinite/patologia , Mediastinite/cirurgia , Complicações Pós-Operatórias , Período Pós-Operatório , Esterno/efeitos dos fármacos , Telas Cirúrgicas , Grampeadores Cirúrgicos
4.
Neuroscience ; 153(4): 1008-19, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-18450385

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are responsible for the functional hyperpolarization-activated current (I(h)) in dorsal root ganglion (DRG) neurons. We studied HCN1-4 channel mRNA and protein expression and correlated these findings with I(h) functional properties in rat DRG neurons of different size. Quantitative RT-PCR (TaqMan) analysis demonstrated that HCN2 and HCN1 mRNAs were more abundantly expressed in large diameter (55-80 microm) neurons, while HCN3 mRNA was preferentially expressed in small diameter (20-30 microm) neurons. HCN4 mRNA expression was very low in neurons of all sizes. At the protein level, subunit-selective polyclonal antibodies and immunofluorescence indicated that HCN1 and HCN3 are present in large diameter neurons and small diameter neurons. Staining in small diameter neurons was in IB4-positive (non-peptidergic) and IB4-negative (peptidergic) cells. HCN2 immunofluorescent staining was heterogeneous and predominantly in large diameter neurons and in small diameter IB4-negative neurons. HCN4 was poorly expressed in all neurons. Functionally, I(h) amplitude and density were significantly larger, and activation kinetics faster, in large diameter neurons when compared with small neurons. I(h) activation rates in small and large diameter DRG neurons were consistent with the relative abundance of HCN subunits in the respective cell type, considering the reported HCN channel activation rates in heterologous systems (HCN1>HCN2 approximately HCN3>HCN4), suggesting exclusivity of roles of different HCN subunits contributing to the excitability of DRG neurons of different size. Additionally, a functional role of I(h) in small DRG neuron excitability was evaluated using a computational model.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Gânglios Espinais/citologia , Neurônios/classificação , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Canais de Cátion Regulados por Nucleotídeos Cíclicos/classificação , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Lectinas/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Modelos Neurológicos , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley
5.
Neuroscience ; 100(2): 229-39, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11008163

RESUMO

The whole-cell GABA-mediated inhibitory postsynaptic currents were studied using the patch-clamp technique on synaptically connected cultured hippocampal neurons. The stimulus-evoked inhibitory postsynaptic currents were recorded in the tetrodotoxin-containing solution in response to the low-amplitude long (10-20ms) extracellular depolarization of a single presynaptic terminal. During each depolarization the postsynaptic response in a form of several superimposed independent events was recorded. The amplitudes of these responses fluctuated randomly, irrespective of the number of the event. In all the investigated neurons the distributions of delays revealed regularly spaced multiple peaks. The number of peaks increased with the duration of stimulus. The distance between the peaks was on average 2.97+/-0.86ms (n=58). The mean intervals between successive releases were distributed exponentially indicating the independence of the release sites. Thus neurotransmitter release might occur with maximal probability at the most probable times irrespective of the presence or failure of the previous event. The increase in stimulating pulse amplitude led to a decrease in the number of clearly detectable peaks in distributions. The decrease in the number of peaks in the distribution of delays was not accompanied with a decrease in the distance between peaks within the range of reliable resolution of the peaks. The amplitude distribution also revealed regularly spaced multiple peaks. The absence of significant correlation between the amplitude of the first and the second event demonstrated the independence of the succeeding release on the preceding release during long stimulation. Results of statistical analysis of our experimental data supports the hypothesis of multiquantal neurotransmitter release in a single inhibitory hippocampal synapse. Neurotransmitter release during long stimulation may occur at certain times with maximal probability, keeping the mean inter-release interval constant. Thus the interval is not determined directly by the depletion of vesicles and the number of vesicles which may be released at the most probable time is random.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Ratos , Ratos Wistar
6.
Neuroscience ; 92(4): 1217-30, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10426479

RESUMO

Miniature, spontaneous and evoked inhibitory postsynaptic currents were studied using the whole-cell patch-clamp technique on synaptically connected cultured hippocampal neurons, at a holding potential of -75 mV. All experiments were done in tetrodotoxin-containing solution to exclude an action potential generation. Spontaneous miniature inhibitory postsynaptic currents were observed in Ca2+-free solution. The distribution of miniature inhibitory postsynaptic currents was skewed to larger current amplitudes and could be fitted reliably by one Gaussian with the mean at 10.0 +/- 1.2 pA (n = 7). Spontaneously occurring whole-cell spontaneous inhibitory postsynaptic currents were recorded in physiological solution (Ca2+ 2 mM). The average amplitude of spontaneously occurring currents depended on membrane potential and reversed at -18 +/- 5 mV (n = 5). The amplitude distribution of spontaneous inhibitory postsynaptic currents had one peak clearly detectable with the mean of 20.0 +/- 2.0 pA (n = 6) or 10.0 +/- 2.0 pA (n = 2). Inhibitory postsynaptic stimulus-evoked currents arose in responses to gradual activation of neurotransmitter release by direct extracellular electrical stimulation of a single presynaptic bouton by short depolarizing pulses. The current-voltage relation of the averaged amplitudes of evoked inhibitory postsynaptic currents was linear and reversed at potential predicted by the Nernst equation for corresponding intra- and extracellular Cl- concentrations. The time-course of decay of miniature, spontaneous and evoked inhibitory postsynaptic currents was fitted by a sum of two exponents and their time-constants were the same in the range of standard deviation. The stimulus-evoked inhibitory postsynaptic currents fluctuated with regard to the discrete aliquot values of their peak amplitudes in all the investigated synapses from a measurable minimum of about 8 pA to 200 pA. The evoked inhibitory postsynaptic currents were assumed as superimposition of statistically independent quantal events. Fitting amplitude histograms of evoked inhibitory postsynaptic currents with several Gaussian curves resulted in peaks that were equidistant with the mean space of 20 +/- 3 pA (n = 10), which was assumed as one quantum (quantum size) to construct the Poisson's distribution. A possibility of simultaneous multiquantal release at single inhibitory synapses of rat hippocampal neurons was discussed.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Algoritmos , Animais , Células Cultivadas , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/fisiologia , Hipocampo/citologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Distribuição de Poisson , Ratos
7.
Neuroscience ; 85(2): 497-508, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9622247

RESUMO

Whole-cell transmembrane potassium currents were studied in somatic membrane of freshly isolated rat dorsal root ganglion neurons. We defined three types of potassium currents, which were separated on the basis of their different potential dependence of activation and sensitivity to external tetraethylammonium and 4-aminopyridine. The potential dependence of kinetic and steady-state properties of a fast inactivating potassium current, a slow inactivating potassium current and a non-inactivating delayed rectifier current were described by the Hodgkin-Huxley equations. A transient fast inactivating potassium current was activated at the most negative membrane potentials and was not reduced in the presence of 10 mM tetraethylammonium in the external solution. 4-Aminopyridine (2 mM) caused an 80% inhibition of this current. The activation of the fast inactivating potassium current was properly described by fitting a single exponent raised to the fourth power. The time constant of activation changed from 4 to 1 ms in the voltage range between -30 and +40 mV. The time constant of inactivation decreased from 35 to 15 ms over the same range of potentials. Parameters for the fit of a Boltzmann equation to mean values for steady-state activation were V1/2=-20mV, k=11.8mV, and for steady-state inactivation V1/2= -85 mV, k=-9.8 mV. A transient slow inactivating potassium current had an activation threshold between -40 and -30 mV. At 2 mM 4-aminopyridine, the depression of the slow potassium current was 55%. The extracellular application of 10 mM tetraethylammonium was less effective and evoked a 40% reduction. The activation of the slow inactivating potassium current was also described by a single exponential function raised to the fourth power. The time constant of activation decreased from 12 ms at a membrane potential of -10 mV to 4 ms at the potential of 60 mV. The inactivation of slow inactivating potassium current was described by two exponents. The time constant for the fast exponent ranged from 300 ms at -20 mV to 160 ms at +60 mV. The slower exponent was also potential dependent and its time constant ranged from approximately 2600 to 1600 ms over the same potentials. Parameters for the Boltzmann equation fittings to mean values were V1/2= -12.8 mV, k=13.4 mV and V1/2= -54.6 mV, k= -12 mV for steady-state activation and inactivation, respectively. A non-inactivating delayed rectifier potassium current was activated at the most positive membrane potentials. This non-inactivating current did not change in the presence of 4-aminopyridine. Extracellular tetraethylammonium (10 mM) caused a 70% reduction of this current. The activation of the non-inactivating potassium current was described by one exponent raised to the fourth power. The time constant for activation ranged from 85 ms at -5 mV to 30 ms at 45 mV. No time-dependent inactivation was observed during 15-s testing potentials in the voltage range between 10 and +60 mV. The activation behavior was characterized by V1/2=15.3 mV, k=12.5 mV. The densities of these potassium currents were studied for three groups of animals: one, five to six and 14-15 days of postnatal development. Fifty cells were examined in each age group. All three types of potassium currents were found in each investigated neuron. The mean densities of slow and fast inactivating potassium currents increased during ontogenetic development. The densities of non-inactivating delayed rectifier potassium current decreased in the first week of ontogenetic development and did not change thereafter.


Assuntos
Animais Recém-Nascidos/fisiologia , Gânglios Espinais/fisiologia , Neurônios/fisiologia , Canais de Potássio/metabolismo , 4-Aminopiridina/farmacologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Etilaminas/farmacologia , Gânglios Espinais/crescimento & desenvolvimento , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA